
Multi-Task Self-Supervised Methods
for Label-Efficient Learning

Combining Contrastive and Pretext-Based Learning
for Effective Encoders from Unlabeled and Federated Data

in Human Activity Recognition and Beyond

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

presented by

Alessandro Gobbetti

under the supervision of

Prof. Marc Langheinrich

co-supervised by

Dario Fenoglio, Mohan Li

September 2025





I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Alessandro Gobbetti
Lugano, 12 September 2025

i





Abstract

The increasing digitalization of society has led to vast amounts of data being collected across
many domains. While supervised deep learning has proven highly effective in extracting value
from such data, its need for large labeled datasets poses major challenges. Labeling can be
costly, time-consuming, and often requires domain expertise or controlled settings. Moreover,
sharing a large amount of data, labeled or not, can raise privacy concerns, especially with sensi-
tive information. Human Activity Recognition (HAR) exemplifies these issues: sensors generate
abundant data, but labeling remains difficult, and sharing can lead to unwanted release of pri-
vate conditions, behaviors, habits, or contexts. Similar challenges arise in areas such as smart
homes, medical research, monitoring and diagnostics, robotics, and many more.

This thesis investigates self-supervised learning (SSL) as a strategy to leverage unlabeled
data to improve classification performance in low-labeled-data scenarios. Building on an anal-
ysis of the state-of-the-art, we select and evaluate promising SSL pretraining objectives, includ-
ing several contrastive learning approaches and pretext tasks, and propose a modular multitask
SSL framework that combines multiple objectives to enhance robustness and generalization.
We also explore exploiting unlabeled data during downstream training through pseudo-labeling
and assess the feasibility of applying our multitask approach in federated learning, where data
remains decentralized to preserve privacy. Although designed to be general, our methods are
consistently benchmarked on HAR, with preliminary validation in image recognition.

Our experiments led to several interesting findings. First, we confirm that SSL methods
markedly improve downstream classification accuracy over fully supervised learning in low-
label regimes (from +13.8 to +19.1 percentage points on our HAR test), and remains highly
competitive when the full labeled dataset is available (-0.9 to +2.3). Second, multitask learn-
ing further enhances SSL performance (+1.1 to +3.2 across all labeled-data regimes compared
to the best single task model). Importantly, the benefit of task combinations depends not only
on the strength of individual tasks but also on their complementarity (for example, adding
a poorly-performing task to contrastive learning yields gains of +0.9 to +1.7 points in im-
age recognition). Third, pseudo-labeling effectively exploits unlabeled data in the downstream
phase, especially in low-labeled data regimes and with larger embedding sizes (+0.4 to +3.0 on
HAR). Finally, we demonstrate that self-supervised pretraining can be effectively performed in a
federated learning setting, with only a minor performance drop compared to centralized train-
ing (-1.6 to +0.1 on HAR). This finding opens the door to enabling pretraining on extremely
large and diverse distributed datasets, without any privacy and security concerns.

The methods and results presented in this thesis indicate a promising path for training robust
and generalizable models by effectively leveraging and exploiting massive amounts of unlabeled
data and possibly sensitive data. To favor replicability and further research we release all the
code and training configurations as open source.

iii



iv



Acknowledgements

This thesis concludes my journey as a student at USI, where I had the privilege of learning from
all the professors, teaching assistants, and fellow students I met during these years. I would
like to thank all of them!

This work was carried out under the supervision of Prof. Marc Langheinrich who, together
with Martin Gjoreski, introduced me years ago to the topics that form the core of this thesis.
They not only supervised my Bachelor’s project on multimodal federated learning for sensor
data but also guided me into the world of research, giving me the opportunity to collaborate with
them on follow-up projects and publications. I am deeply grateful for their support, guidance,
and trust throughout this journey.

The thesis was co-supervised by Dario Fenoglio and Mohan Li, whose invaluable advice and
feedback greatly shaped this work. I will always remember the many discussions with Dario
that helped refine the ideas and concepts presented here. I am also thankful to Mohan for his
precise insights and suggestions, which significantly improved the quality of this thesis.

Finally, I thank my family for the essentials: love, food, shelter, travels, bike rides, play,
culture, endless talks and discussions — and, of course, the occasional GPUs.

v



vi



Contents

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Human Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Learning with Limited Labeled Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Self-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Complementary Paradigms for Data-Efficient Learning . . . . . . . . . . . . 14
2.3.4 Multitask Learning for better embeddings . . . . . . . . . . . . . . . . . . . 15

2.4 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Standard Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Federated Learning with Limited Supervision . . . . . . . . . . . . . . . . . 18

2.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Data and Experimental Set-up 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 UCI HAR Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Creating a Limited Labeled Data Scenario . . . . . . . . . . . . . . . . . . . 23
3.3.2 Cross-Validation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Training Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.5 Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



viii Contents

4 Self-Supervised Learning 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Downstream Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Supervised Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Self-Supervised Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Pretrain Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Pretext Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Multitask Self-Supervised Learning 37
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Comparing with Single-Task SSL . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.2 Visualizing the Data Representations . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.3 Different Pretraining Tasks Combinations . . . . . . . . . . . . . . . . . . . . 43
5.3.4 Consequences of Overfitting during Pretraining . . . . . . . . . . . . . . . . 44
5.3.5 Ablation: Different Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.6 Ablation: Testing the Embedding Size . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Improving Accuracy 51
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Pseudo-Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Multitask Pretraining in a Federated Learning Setting 53
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Federated Learning Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Generalization to Other Domains 59
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.3.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3.2 Downstream Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.4 Selected Pretrain Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.4.1 Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.4.2 Pretext Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.4.3 Multitask SSL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



ix Contents

8.6 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9 Conclusions 67
9.1 Summary of Findings and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Implementation Notes 71

Bibliography 73



x Contents



Figures

2.1 HAR pipelines with conventional machine learning and deep learning approaches
[Wang et al., 2019]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Self-supervised learning pipeline. The model is first pretrained on unlabeled data
using a pretext task, then specialized on a small set of labeled examples for the
downstream task. In the image the concept is illustrated for the HAR example. . 9

2.3 Federated Learning pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 SSL setup overview. (A) Example of an architecture for pretraining with task-
specific approaches (e.g., augmentation classification, reconstruction) where the
encoder learns representations using a task-specific head and loss function on
unlabeled data. (B) Pretraining with multimodal contrastive learning (VICReg
with features), involving the encoder, a projection head, a designed feature en-
coder architecture that maps the other input modality to the same space as the
main data branch, and a specialized contrastive loss. (C) The encoder from A
or B is frozen and used to generate embeddings for a downstream supervised
classification task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Results of the different pretext tasks on the UCI HAR dataset. Reported as mean
and its 90% confidence interval over 5 runs. Numbers in parentheses indicate
the number of labeled samples used for each experiment. . . . . . . . . . . . . . . 34

5.1 Multitask Self-Supervised Learning architecture . . . . . . . . . . . . . . . . . . . . 38
5.2 Comparison of single-task SSL methods with the multitask SSL method. The plot

shows the accuracy of the model as a function of the number of labeled samples
used for training, with different colors representing different SSL methods. We
report the mean and its 90% confidence interval over 5 runs. . . . . . . . . . . . . 39

5.3 Task contribution in percentage during training. The weights are dynamically
learned, allowing the model to adapt to the different scales and evolution of the
task-specific losses. The plot shows the evolution of the multiplying factors for
each task as the training progresses, with different colors representing different
tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 t-SNE visualization of the data representations. The first two subfigures show
the raw data and expert features, while the last one shows the MTL embeddings.
The colors represent different activities. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 t-SNE visualization of the latent embeddings learned by the supervised model
with different amounts of labeled data. The colors represent different activities
using the same color map as Figure 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



xii Figures

5.6 Overfitting the pretraining tasks on the UCI HAR dataset. The plot shows the
accuracy of the model as a function of the number of training epochs of the
multitask encoder, with different colors representing different amounts of labeled
data used for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7 Comparison of multitask SSL with single-task SSL methods using a DeepConvL-
STM encoder (top) or a Transformer-based encoder (bottom). The plots show
the accuracy of the model as a function of the number of labeled samples used for
downstream training, with different colors representing different SSL methods.
We report the mean and its 90% confidence interval over 5 runs. The encoders
are trained for 200 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.8 Multitask SSL with different embedding sizes. The plot shows the accuracy of
the model as a function of the number of labeled samples used for downstream
training, with different colors representing different embedding sizes. We report
the mean and its 90% confidence interval over 5 runs. The FCN encoder is trained
for 200 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 Downstream accuracy of MTL SSL in a federated setting. The x-axis represents
the number of training labels, while the y-axis shows the accuracy achieved. We
report the mean and its 90% confidence interval over 5 runs. All models are
trained with 2 local epochs and the indicated number of rounds. The dashed
line is the MTL SSL model in a centralized setting, trained with 200 epochs. . . . 54

7.2 Downstream accuracy of MTL SSL in a federated setting with different numbers
of training labels and pretraining rounds. The x-axis represents the number of
training rounds, while the y-axis shows the accuracy achieved. The different lines
represent different numbers of downstream labeled examples used for training. 55

7.3 Downstream accuracy of federated single-task and multitask SSL models. The x-
axis represents the number of training labels, while the y-axis shows the accuracy
achieved. We report the mean and its 90% confidence interval over 5 runs. The
models are trained with 2 local epochs and 500 pretraining rounds. . . . . . . . . 56

8.1 Sample labeled images from the STL-10 dataset. The labeled and test dataset
contains 10 classes of objects. The unlabeled dataset contains a broader set of
object classes, including other types of animals and vehicles. Each class has mul-
tiple images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.2 Contrastive learning pretraining task. The model learns to maximize the simi-
larity between two augmented views of the same image. The figure shows an
example of two augmented views of the same image. . . . . . . . . . . . . . . . . . 61

8.3 Masked autoencoder pretext task. The model learns to reconstruct the original
image from a masked version of it. Before the masking, the original image is
augmented to increase diversity. The figure shows an example of the original
image, the masked version, and the reconstructed image. . . . . . . . . . . . . . . 62

8.4 Rotation prediction pretext task. The model learns to predict the rotation angle
applied to an unseen input image. The images are shown with the predicted
angle (0, 90, 180, or 270 degrees). The model predicts the correct angle with
100% confidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



xiii Figures

8.5 t-SNE visualization of the learned representations for the STL-10 dataset. The
plotted samples are unseen during pretraining. The first two figures show the
representations learned by the individual pretraining tasks: rotation prediction
(RP) and contrastive learning (CL). The third figure shows the representations
learned by the multitask model combining CL and RP. The colors represent the
different classes in the dataset. The t-SNE embeddings are computed on the
512-dimensional feature vectors obtained from the ResNet-18 encoder. . . . . . . 65



xiv Figures



Tables

2.1 Examples of human activities recognized by HAR systems across different do-
mains [Lara and Labrador, 2013]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 List of measures for computing feature vectors [Anguita et al., 2013]. . . . . . . . 22

3.2 Distribution of activity labels in the UCI HAR dataset for both training and test
sets. The dataset shows a relatively balanced distribution across the six activity
classes with slight variations in the number of samples per activity. The percent-
ages are calculated based on the total number of samples in each set. . . . . . . . 23

3.3 Summary of labeled data regimes used in the experiments. Each regime specifies
the number of labeled samples available for training and validation, simulating
scenarios with varying amounts of labeled data. The full dataset regime uses all
available labeled training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Results of the different pretext tasks on the UCI HAR dataset. The results (accu-
racy and macro-averaged F1 score) are reported as mean ± standard deviation
over 5 runs. The numbers in parentheses indicate the number of labeled samples
used during pretraining. The encoders are pretrained for 200 epochs. . . . . . . . 33

5.1 Ablation study on multitask SSL task combinations. Each row shows a differ-
ent combination of SSL tasks: classification augmentation (class), reconstruction
(rec), contrastive learning (CL), and VICReg with features, indicated by check-
marks (✓) and cross marks (✗). The table presents downstream classification
accuracy (%) across different numbers of labeled training samples. Bold values
indicate the best performance for each data regime. The optimal three-task com-
bination (class + CL + VICReg) consistently outperforms other combinations,
while the inclusion of reconstruction often degrades performance when com-
bined with contrastive methods. Results are averaged over 5 folds with encoders
trained for 200 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Multitask SSL with different embedding sizes. The table shows the accuracy of
the model as a function of the number of labeled samples used for downstream
training, with different embedding sizes. The FCN encoder is trained for 200
epochs. The values are the mean and standard deviation of the accuracy over 5
runs. The best accuracy for each number of labeled samples is highlighted in bold. 47

xv



xvi Tables

6.1 Effect of pseudo-labeling on the accuracy of the model with different embedding
sizes. The results are reported as mean ± standard deviation over 5 runs. The
numbers in parentheses indicate the number of labeled samples used for each task. 52

7.1 Downstream accuracy results for different numbers of training labels and differ-
ent pretraining rounds in a federated learning setting. The numbers in paren-
theses indicate the total number of training examples used for each method. The
best performing method for each number of training labels is highlighted in bold. 55

8.1 Downstream test accuracy of the supervised training and of the different pretrain-
ing methods on the STL-10 dataset. The supervised baseline trains the model
from scratch using the available labeled data at the different regimes. All the
other models are pretrained on the full unlabeled dataset, and then downstream
training is performed on the labeled data. The table shows the accuracy for dif-
ferent labeled data regimes: 100, 250, and 500 labeled images per class. For
each regime, 80% of the labeled data is used for training and 20% for validation.
The best results are highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . 64



Chapter 1

Introduction

This chapter introduces the context and motivation of the thesis, the objec-
tives and contributions, and the structure of the thesis.

1.1 Context and Motivation

In the last few decades, our society and all scientific and engineering domains have witnessed
an enormous transformation towards the computerization and digitalization of most processes.
This has led to an unprecedented increase in the amount of data generated, collected, and
stored, concerning virtually every aspect of human activity and all physical phenomena, opening
the door to large-scale analysis [Emmert-Streib, 2021].

Raw data in itself is often not directly useful and needs to be processed to extract desired
knowledge depending on needs. For example, the goal may be to classify a signal, predict
a future value, or provide insights [Ahmed et al., 2023]. Over the years, several approaches
have been proposed to tackle these problems, from traditional signal processing and statistical
methods to modern machine learning techniques. Among these, deep learning has gained sig-
nificant prominence for its ability to extract complex patterns directly from raw data [LeCun
et al., 2015].

To achieve high-level performance, most deep learning models employ a supervised training
paradigm, which involves learning to map inputs to outputs by training on large collections
of labeled examples [Chen et al., 2024]. However, collecting large labeled datasets could be
time-consuming, costly, and in some cases infeasible, especially when labeling requires expert
knowledge or when privacy and security concerns limit data sharing [Yang et al., 2023; Loeffler
et al., 2024]. By contrast, unlabeled data is typically easier to collect and much more abundant.

Human Activity Recognition (HAR) is a typical use case in which all the above factors play an
important role. HAR is the task of automatically recognizing human activities from sensor data
[Lara and Labrador, 2013]. Tracking the user in their daily lives or when performing specific
tasks can produce huge quantities of measurements. However, labeling these measurements is
often difficult, as it requires the user or a third party to manually segment data streams and
annotate the activities performed. Moreover, sharing these measurements may pose privacy
concerns, as they can contain sensitive information about the user’s conditions, behavior, and
context [Jung, 2020]. For these reasons, many of the available HAR datasets are small, involving
limited activities and users, and collected in controlled environments, which may not generalize
well to real-world applications [Wang et al., 2019; Demrozi et al., 2020]. The same situation can

1



2 1.2 Objectives and Contributions

be found in many other domains, such as medical imaging, speech recognition, recommender
systems, remote sensing, robotics, machine translation, and text classification [Ren et al., 2021].

In recent years, research has focused on techniques to overcome the problem caused by the
scarcity of labeled data. One classic approach is to perform the learning, not on raw data but
on a handcrafted representation. This representation is designed to be more expressive and
to simplify solving the specific problem. However, constructing such representations relies on
heuristic methods driven by human expertise and domain knowledge. Even if these methods
can be effective for specific tasks, they are often limited to shallow features such as mean,
variance, frequency, or amplitude, failing to capture complex patterns and relationships in the
data [Wang et al., 2019].

More recently, interest has shifted towards learning these representations directly from the
data, leveraging the abundance of unlabeled data. A prominent approach is self-supervised
learning (SSL), in which training is split into two phases. In the pretraining phase, a model is
trained on a large amount of unlabeled data to learn compact and expressive representations
of the data using objectives directly derived from the data itself, without requiring labels. In
the second phase, a downstream model is built by composing the representation encoder with
a task-specific head, trained on the available small set of labeled examples [Gui et al., 2024].
The various methods differ in the way self-supervision is performed and, in particular, in how
the pretraining objective is defined.

In parallel, research has also tackled the challenge of preserving privacy and security when
training machine learning models on sensitive data. Federated Learning (FL), in particular,
has become the prominent approach to address this problem [Zhang et al., 2021]. Privacy is
preserved by distributing the training process across multiple clients, each holding their own
local data.

1.2 Objectives and Contributions

This thesis explores the potential of SSL in scenarios with limited labeled data for classification
tasks. In particular, we want to compare various ways of defining the objectives of the pre-
training phase, and how multiple objectives can be combined to improve generalizability and
robustness of the learned representations. Moreover, we want to investigate how these methods
can be applied in a federated setting, where learning a complex objective might be challenging
due to the limited and diverse data available on each client. We focus primarily on HAR as a
case study, but our method is general and can be applied to other domains. To demonstrate this
generality, we also evaluate it on image recognition as a secondary use case.

The main contributions of this thesis will be a comprehensive analysis of the performance of
different SSL pretraining methods in the context of HAR, a proposal of a multitask SSL frame-
work that combines multiple pretraining tasks to create more robust representations, an evalua-
tion of how to exploit unlabeled data also for fine-tuning the downstream task classifier, and an
exploration of how the proposed multitask approach performs in a federated setting. Moreover,
we will analyze the generality of the proposed methods by designing a multitask SSL solution
for image recognition.

All the benchmarks will be performed on publicly available datasets, and the code will be
made available to the community to facilitate reproducibility and help future work in this area.



3 1.3 Structure of the Thesis

1.3 Structure of the Thesis

The rest of the thesis is structured as follows:

• chapter 2 provides the relevant background and analysis of related work on Human Activ-
ity Recognition, Self-Supervised Learning, Multi-Task Learning, and Federated Learning,
highlighting the challenges and solutions proposed in the literature.

• chapter 3 describes the data used in the thesis and the methods employed for the exper-
iments. Additional details are provided in Appendix A.

• chapter 4 introduces our self-supervised learning framework, identifies a general architec-
ture for pretraining, and discusses the results of the experiments on different SSL meth-
ods.

• chapter 5 proposes a modular architecture for multitask SSL, which allows for the sim-
ple combination of multiple pretraining tasks. It compares the performance of multitask
SSL with single-task approaches and presents an extensive ablation study to analyze the
impact of each design choice and component on the final performance.

• chapter 6 explores how to exploit unlabeled data also for fine-tuning the downstream
task classifier, presenting the results of the experiments on the proposed approach.

• chapter 7 extends the analysis to a federated setting, evaluating the performance of the
multitask SSL framework in a distributed environment.

• chapter 8 discusses the generalization of the proposed methods to other domains and
datasets. Specifically, we employ the methods in the field of image recognition, high-
lighting the applicability of the framework beyond HAR.

• chapter 9 concludes the thesis, summarizing the main findings and contributions, and
discussing future work directions.



4 1.3 Structure of the Thesis



Chapter 2

Background and Related Work

Before presenting the thesis contributions, it is essential to provide an
overview of the background relevant to the topics discussed and a summary
of the most closely related prior works. We will first introduce the field of
HAR, then discuss the challenges and solutions of working with limited la-
beled data, and finally see how privacy and security concerns in machine
learning can be addressed through FL.

2.1 Introduction

This thesis addresses various topics, from learning with limited labeled data to HAR and FL. This
chapter sets the stage, providing the necessary background and an analysis of related works.

We first define the concept of HAR from sensor data and discuss the challenges and methods
commonly used in this field (section 2.2). We see how many solutions rely on the availability
of large annotated datasets, which are often hard to obtain, especially in real-world scenarios.
We then summarize the classes of machine learning solutions to the problem of learning with
limited labeled examples, focusing on modern deep learning approaches (section 2.3). In par-
ticular, we cover self-supervised and semi-supervised paradigms, which are the foundations for
the work proposed in this thesis. We then address privacy and security in machine learning,
specifically concentrating on FL, which allows training models on distributed data while pre-
serving privacy (section 2.4). Finally, we wrap up the chapter with a discussion on how these
topics are interconnected and how they relate to the contributions of this thesis.

Since a detailed presentation of the background and a full coverage or related work would
be too extensive, and beyond the scope of this thesis, this chapter will focus solely on the most
closely relevant concepts and works. For a more general introduction to the topics, we refer
the reader to available survey works on Human Activity Recognition [Lara and Labrador, 2013;
Wang et al., 2019; Demrozi et al., 2020; Chen et al., 2021; Ni et al., 2024; Kaseris et al., 2024],
self-supervised learning [Liu et al., 2021; Yang et al., 2023; Gui et al., 2024; Zhang et al., 2024;
Chen et al., 2024], self-supervised learning applied to HAR [Haresamudram et al., 2022; Ige
and Mohd Noor, 2022; Logacjov, 2024], multitask learning [Zhang and Yang, 2022; Yu et al.,
2024], federated learning [Aledhari et al., 2020; Zhang et al., 2021; Kairouz et al., 2021; Huang
et al., 2024; Li et al., 2025b], and federated learning with limited supervision [Jin et al., 2023].

5



6 2.2 Human Activity Recognition

2.2 Human Activity Recognition

HAR is a classification task that consists of recognizing activities performed by users based on
collected data [Ann and Theng, 2014; Lara and Labrador, 2013]. It is a crucial task in various
applications, such as health monitoring, fitness tracking, and human-computer interaction, and
the types of recognized activities can vary widely depending on the applications and target
domain (see Table 2.1) [Lara and Labrador, 2013].

Group Activities

Ambulation Walking, running, sitting, standing still, climbing stairs, descending stairs, riding elevator.
Transportation Riding a bus, cycling, driving.
Phone usage Text messaging, making a call.
Daily activities Eating, drinking, working at the PC, watching TV, reading, brushing teeth, stretching, vacuuming.
Exercise/fitness Rowing, lifting weights, spinning, Nordic walking, doing push ups.
Military Crawling, kneeling, situation assessment, opening a door.
Upper body Chewing, speaking, swallowing, sighing, moving the head.

Table 2.1. Examples of human activities recognized by HAR systems across different do-
mains [Lara and Labrador, 2013].

Traditionally, HAR methods can be divided into two main approaches: vision-based and
sensor-based. Vision-based methods rely on cameras and computer vision techniques to an-
alyze the movements of the observed subjects and translate them into activities. They have
the advantage of not requiring body-attached sensors, and can track multiple subjects simul-
taneously, also capturing interactions between them. However, they are bound to specific en-
vironments (where cameras are installed), are sensitive to environmental conditions (such as
lighting and occlusions), can raise privacy concerns due to continuous video recording, and of-
ten require significant computational resources [Poppe, 2010]. Sensor-based methods, on the
other hand, use wearable devices that typically include sensors such as tri-axial accelerometers,
gyroscopes, and magnetometers. They are generally less intrusive, more robust to environmen-
tal conditions, and can operate in real-time with limited computational resources, making them
more suitable for continuous monitoring in everyday environments [Ni et al., 2024]. For this
reason, they are of widespread use, also due to the large availability of affordable commod-
ity devices such as smartphones, smartwatches, and fitness trackers, which are equipped with
various sensors that can be used for HAR [Ramanujam et al., 2021; Ige and Mohd Noor, 2022].

This thesis focuses on sensor-based HAR, specifically on the use of wearable sensors to
recognize activities performed by users in real-world scenarios.

All collected data is sampled over time, the goal is to determine the intervals when a specific
activity is performed. Formally the problem can be defined as follows [Lara and Labrador,
2013]: given a set of activity labels L = {l0, . . . , ln−1} (e.g., sitting, walking, etc.) and a set
S = {S0, . . . ,Sk−1} of k time series, each measuring particular user properties (e.g. acceleration,
angular velocity, etc.) in a specific time interval I = [tα, tω], the goal is to analyze the data and
partition it into consecutive, non-empty, and non-overlapping time intervals 〈I0, . . . , Ir−1〉 of I
such that
⋃r−1

j=0 I j = I and each interval I j is labeled with the corresponding activity performed.
To make the problem more manageable, a common strategy is to divide the continuous data

stream into fixed-duration time windows, where each window is labeled with the corresponding
activity [Lara and Labrador, 2013]. This approach assumes that activities are long enough to
be captured within the time windows, that the activities are stationary, meaning that they do



7 2.2 Human Activity Recognition

not change significantly over time, and that their transitions are fast enough to be ignored.
Since it is extremely challenging to determine activity labels directly from raw sensor data

using theoretical rules alone, HAR systems commonly rely on machine learning methods to
learn patterns from labeled examples.

(a) HAR pipeline with conventional machine learning approaches.

(b) HAR pipeline with deep learning approaches.

Figure 2.1. HAR pipelines with conventional machine learning and deep learning ap-
proaches [Wang et al., 2019].

As shown in Figure 2.1a, early work in sensor-based HAR primarily focused on handcrafted
features extracted from time and frequency domains, followed by the use of conventional ma-
chine learning algorithms, such as decision trees, support vector machines, and k-nearest neigh-
bors [Avci et al., 2010; Lara and Labrador, 2013; Demrozi et al., 2020; Wang et al., 2019].

Converting raw data into feature vectors typically involves two main steps: preprocessing
to reduce noise and normalize the signals, followed by feature extraction to derive meaningful
attributes from the cleaned data. A recent survey [Demrozi et al., 2020] identified 26 commonly
used time-domain features and 20 frequency-domain features, often combined in different ways
across studies. However, to achieve good performance, these methods often require extensive
feature engineering and domain expertise. Additionally, they can be resource-intensive and
time-consuming at runtime, as they require the extraction of features from raw data before the
classification step.

Advancements in deep learning have led to the development of end-to-end models that can



8 2.3 Learning with Limited Labeled Data

automatically learn features from raw sensor data, eliminating the need for manual feature
engineering (see Figure 2.1b). Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs), particularly Long Short-Term Memory (LSTM) models, were among the
first deep learning techniques applied to HAR and demonstrated the ability to automatically
learn spatio-temporal patterns from raw sensor data, achieving state-of-the-art results on bench-
mark datasets at the time of their introduction [Hammerla et al., 2016; Jiang and Yin, 2015].
Subsequently, hybrid architectures that integrate CNNs with LSTMs have been introduced to
further enhance recognition accuracy [Ordóñez and Roggen, 2016]. This class of techniques,
that had many follow-ups, is still widely used and ranks among the best-performing meth-
ods in HAR [Kaseris et al., 2024]. Recent studies have explored more complex architectures,
such as Transformer-based models [Leite et al., 2024] and graph neural networks [Wieland and
Pankratius, 2023], to better model the sequential and relational properties of multi-sensor data.
Moreover, there is growing interest in robust HAR under practical constraints such as missing
sensor modalities, user variability, and data heterogeneity [Woo et al., 2023; Gobbetti et al.,
2024].

Despite these advancements, HAR remains a challenging task, particularly in real-world
scenarios where data is often noisy, incomplete, and subject to variations in user behavior and
environmental conditions. In particular, most of the discussed techniques rely on the availability
of large curated datasets, which are exploited for supervised learning.

2.3 Learning with Limited Labeled Data

In many real-world applications, acquiring labeled data is often expensive, time-consuming, and
sometimes impractical. This is particularly true in healthcare, which requires expert annotation,
in privacy-sensitive domains such as personal sensor data, and in complex modalities like sensor
recordings, where manual labeling is labor-intensive and error-prone [Loeffler et al., 2024;
Sheng and Huber, 2025].

As a result, many machine learning tasks face the challenge of working with limited la-
beled data, which can lead to overfitting and poor generalization performance. To address this
challenge, several strategies have been proposed to leverage the available labeled data more
effectively and to make use of the abundant unlabeled data [Ren et al., 2021; Chen et al., 2021;
Ige and Mohd Noor, 2022]. In the following, we will discuss SSL (see subsection 2.3.1) and
semi-supervised learning (see subsection 2.3.2), which cover the main classes of solutions and
form the basis for the methods developed in this thesis. We will then briefly summarize com-
plementary approaches and concepts for data-efficient learning, including transfer learning,
few-shot learning, and active learning (see subsection 2.3.3).

2.3.1 Self-Supervised Learning

SSL is a paradigm that aims to transform large quantities of unlabeled data into a representation
containing useful knowledge on the data, before specializing it for specific downstream tasks
[Gui et al., 2024].

One key idea is to design a set of pretext tasks that can be solved using unlabeled data, with
the expectation that solving them will help the model capture underlying patterns relevant to
the target problems [Zhai et al., 2019; Radford et al., 2021]. Different methods vary in their
choice of pretext tasks, which often depend on the characteristics of the data. These tasks may



9 2.3 Learning with Limited Labeled Data

involve predicting missing data segments, rearranging shuffled data (as in jigsaw puzzles), or
contrasting different augmented views of the same input [Gui et al., 2024; Liu et al., 2021].

An alternative solution to acquire this knowledge is to explicitly guide the learning process
to produce representations that possess some desirable properties that are expected to facilitate
effective knowledge transfer. This is done prominently by contrastive approaches that aim to
build compact representations where similar inputs are close together while dissimilar ones are
far apart [Liu et al., 2021; Chen et al., 2020].

Independent from the way the knowledge is learned, the representation is exploited in a
second stage (see Figure 2.2), where a smaller set of labeled examples is used to train a task-
specific network [Zhai et al., 2019; Radford et al., 2021]. By combining general knowledge
learned from the unlabeled data with specific information from the labeled examples, SSL meth-
ods can outperform traditional supervised learning approaches in scarce labeled data scenarios
[Ige and Mohd Noor, 2022; Gui et al., 2024].

xII Encoder

Frozen
Encoder

Large Unlabeled
Dataset

Small Labeled
Dataset

Knowledge 
Transfer

Pretrain Task

Embedding

Downstream
Classifier

Self-Supervised Pretraining

Supervised Downstream Training

Figure 2.2. Self-supervised learning pipeline. The model is first pretrained on unlabeled
data using a pretext task, then specialized on a small set of labeled examples for the
downstream task. In the image the concept is illustrated for the HAR example.

In this study, we mainly focus on SSL methods for sensor signals, which are designed to
learn representations from time-series data from wearable sensors, such as accelerometer and
gyroscope signals. In the following sections, we first illustrate the most common pretext tasks
used in this context, and then discuss the contrastive approaches.

Pretext Tasks

In typical pretext task-based methods, classification or regression tasks are used to train the
network on originally unlabeled data in a supervised manner. This is achieved by generating
the required supervision signal directly from the unlabeled input data itself.

Learning to encode input data into a lower-dimensional representation and then decode
it back to the original input is one of the most prominent examples, which is realized through



10 2.3 Learning with Limited Labeled Data

autoencoder networks. These networks proved to be effective in learning useful representations
from unlabeled data, as they just need to minimize the reconstruction error between the input
and the output [Zhang et al., 2024].

Masked autoencoders (MAE) and denoising autoencoders (DAE) are two popular variants
of autoencoders that have been successfully applied to SSL tasks. Instead of the original input,
MAEs and DAEs learn to reconstruct the original signal from a corrupted version of it. MAEs
mask a portion of the input data, while DAEs add noise to the input data. These methods en-
courage the model to learn robust and meaningful representations that capture the underlying
structure of the data [He et al., 2022; Zhang et al., 2023a; Vincent et al., 2008; Zhang et al.,
2024].

Another related approach used with time-dependent data is to train the model to predict
future values based on past observations. This method encourages the model to learn tempo-
ral dependencies and patterns in the data, which can be useful for various downstream tasks
[Amrani et al., 2022].

Several approaches use classification rather than reconstruction as a pretext task. One of the
most popular approaches to SSL is to augment the input data in various ways, such as applying
transformations, cropping, or adding noise, and then train the model to predict what transfor-
mations were applied [Logacjov, 2024]. Variations of this method include the classification of
the input data into a single class label that represents the applied transformation, effectively
treating them as labels, or the prediction of which transformations were applied to the input
data, allowing for multiple of them to be employed simultaneously [Saeed et al., 2019; Lo-
gacjov, 2024]. Also related are methods that shuffle segments of the input data and train the
model to recover the original order [Misra and van der Maaten, 2020].

These methods are of general use and have found successful application to HAR problems
[Saeed et al., 2019; Haresamudram et al., 2022; Amrani et al., 2022; Logacjov, 2024]. In this
thesis, we will evaluate the performance of pretext tasks. We will also show how combining
multiple pretext tasks and contrastive representations leads to better inference performance.

Contrastive Learning

The knowledge extracted from the pretraining step should create representations that empha-
size the underlying structure of the input data. For HAR, we expect that in the representation
space, similar activities should be clustered together while dissimilar ones should be separated.

In recent years, one of the most popular approaches has been contrastive learning (CL).
Contrastive methods learn representations by comparing (contrasting) examples: they treat
augmented views (i.e., transformations) of the same data instance as positive pairs and views
of different instances as negative pairs. The goal is to maximize the similarity between positive
pairs while minimizing the similarity measure between negative pairs [Liu et al., 2021; Chen
et al., 2020]. Positive examples are useful to learn the structure of the data, while negative
examples avoid representation collapse [Grill et al., 2020].

Early contrastive methods, such as SimCLR [Chen et al., 2020] and MoCo [He et al., 2020],
have played a significant role in advancing SSL pretraining techniques, achieving, using very
simple downstream classifiers, performance levels comparable to state-of-the-art supervised
learning, thus demonstrating the effectiveness of this approach, especially for large-scale appli-
cations [Liu et al., 2021].

Training these types of networks requires the computation of loss functions that contrast
positive and negative examples. The positive examples are generated through transformations



11 2.3 Learning with Limited Labeled Data

of the original data. Negative examples, however, require access to different instances. For
performance reasons, these negative examples are located within the same batch.

To ensure the presence of negative examples while avoiding the need for large batch sizes,
MoCo [He et al., 2020] introduced a dynamic dictionary that maintains a queue of negative
examples. This approach requires a set of encoded examples k0, k1, k2, . . . and a query q. A
contrastive loss function is applied when a single key k+ matches the query q, while all other
keys are treated as negative examples. The InfoNCE loss [van den Oord et al., 2019] is used:

Lq = − log
exp (q · k+/τ)
∑K

i=0 exp (q · ki/τ)
(2.1)

where q is the query vector, k+ is the positive key, ki are the K negative key vectors, and τ is a
temperature hyperparameter. The required diversity of negative examples is obtained by main-
taining a sufficiently large queue of keys. Very large queues, however, can impact performance
due to the need for similarity searching.

SimCLR [Chen et al., 2020] adopts a mini-batch approach where each of the N original sam-
ples is augmented twice, producing 2N distinct views. The model is then trained to encourage
similar pairs to align. Rather than explicitly selecting the negative examples, SimCLR treats the
remaining 2N − 1 augmented views in the batch as negative for each positive pair [Gui et al.,
2024]. Let sim(u, v) = u⊤v

∥u∥∥v∥ represent the cosine similarity between two vectors u and v. The
SimCLR NT-Xent loss for a positive pair (i, j) is defined as:

Li, j = − log
exp
�

sim
�

zi , z j

�

/τ
�

∑2N
k=1 1[k ̸=i] exp (sim (zi , zk)/τ)

(2.2)

where 1[k ̸=i] is an indicator function that is 1 if k ̸= i, and τ is a temperature hyperparameter.
The overall loss is computed across all positive pairs in the batch. The method is considerably
than previous ones [Chen et al., 2020], but is limited by the need to ensure that each batch
contains sufficiently diverse examples. This is typically achieved through randomization, which,
however, may be suboptimal for very unbalanced datasets.

Since accessing sufficiently diverse negative examples is one of the main challenges of this
class of approaches, recent research has concentrated on avoiding representation collapse only
using positive examples [Grill et al., 2020]. Instead, they introduce different strategies like self-
distillation and feature decorrelation. Still, the main principle of maintaining positive example
consistency remains [Gui et al., 2024].

BYOL (Bootstrap Your Own Latent) [Grill et al., 2020] and SimSiam [Chen and He, 2021] are
two prominent examples of self-distillation approaches. These methods use siamese networks,
i.e., two identical networks with shared or different weights, to maximize the similarity between
two augmented views of the same input (each going through a different network), but break
the symmetry between the two branches to mitigate the risk of collapsing [Lee and Lee, 2023;
Gui et al., 2024].

Specifically for HAR, Qian et al. [2022] compares SimCLR, BYOL, and SimSiam and other
contrastive solutions with and without negative examples. The survey also studies the effect of
different data augmentation strategies and variations of backbone network architectures. Hare-
samudram et al. [2022] evaluates both contrastive and pretext-based methods across different
dimensions. They examine the properties of learned representations, such as similarity to su-
pervised learning, linear separability, and implicit dimensionality. They also study the influence
of dataset characteristics and the generalizability.



12 2.3 Learning with Limited Labeled Data

Other methods instead rely on feature decorrelation to avoid representation collapse. Bar-
low Twins [Zbontar et al., 2021] uses two identical "twin" networks, each processing a different
augmented view of the same input (Y A and Y B). The method encorourages the cross-correlation
matrix of their output embeddings (ZA and ZB) to resemble the identity matrix: meaning it
pushes the on-diagonal elements (representing the correlation between the same components
of the two views) to be close to 1, while the off-diagonal elements (representing the correlation
between different components) are pushed to be close to 0.

Following on this idea, VICReg [Bardes et al., 2022; Shwartz-Ziv et al., 2023] introduced a
more general approach that combines invariance and covariance terms from Barlow Twins with
a new variance term that encourages the embedding vectors of samples within a batch to be
different, explicitly preventing a collapse due to a shrinkage of the embedding vectors towards
zero.

The overall loss function thus contains three terms:

• Invariance: encourages the model to produce similar embeddings for augmented views
of the same input. It is formulated as the mean square Euclidean distance between the
embedding pairs without any normalization.

Linv(Z
A, ZB) =

1
n

n
∑

b=1





ZA
b − ZB

b







2
(2.3)

where n is the batch size, and ZA
b and ZB

b are the embeddings of the two augmented views
of the same input.

• Covariance: encourages the model to produce uncorrelated embeddings for different in-
puts, and as in Barlow Twins, it is defined as:

Lcov(Z) =
1
d

n
∑

i ̸= j

[C(Z)]2i j (2.4)

where C(Z) represents the cross-correlation matrix of the output embeddings.

• Variance: is the main contribution of VICReg, and it encourages the model to produce
diverse embeddings for different samples within a batch, thus preventing collapse. It is
formally defined as a hinge function on the standard deviation of the embeddings along
the batch dimension.

Lvar(Z
A) =

1
d

d
∑

j=1

max(0,γ− S(ZA
j ,ϵ)) (2.5)

where ZA
j represents the vector of the j-th component of the embedding ZA, and S(ZA

j ,ε)
is the regularized standard deviation. The constant γ (set to 1 in the original paper)
controls the standard deviation threshold, and ϵ is a small parameter to avoid numerical
instability.

The overall loss function is then a weighted sum of the three terms:

LVICReg =Linv(Z
A, ZB) +α
�

Lvar(Z
A) +Lvar(Z

B)
�

+ β
�

Lcov(Z
A) +Lcov(Z

B)
�

(2.6)



13 2.3 Learning with Limited Labeled Data

where α and β are hyperparameters that control the trade-off between the invariance, co-
variance, and variance terms. It is important to note that both the variance and covariance
regularization terms are applied independently to the two branches of the architecture.

VICReg has been shown to be effective and can successfully function without sharing weights
between the two branches, even with two completely disjoint branch architectures. This is
particularly useful as it allows to contrast embeddings from different input modalities [Bardes
et al., 2022; Shwartz-Ziv et al., 2023].

Learning from different modalities has also been studied in other CL contexts. For instance,
Radford et al. [2021] applied this concept to images and text, while Nonnenmacher et al. [2022]
contrasts expert features with time-series data from different domains, including HAR.

In this thesis, we explore both CL as a standalone method to learn good embeddings for
HAR, and specifically VICReg as a general technique for multi-modal self-supervised learning.

2.3.2 Semi-Supervised Learning

While in the previous section we focused on methods that use the vast mass of unlabeled data
solely to learn representations and the scarce labeled data to solve downstream tasks, semi-
supervised learning leverages both labeled and unlabeled data together during training [Loeffler
et al., 2024]. Based on the assumption that labeled and unlabeled data are sampled from the
same or a similar distribution, the methods are designed to transfer the sparse information from
the labeled data to the unlabeled one, thereby improving the model’s performance on the target
task.

A vast variety of semi-supervised methods have been proposed, for an extensive overview,
we refer the reader to the classic book of Chapelle et al. [2010] for the general principles.

Yang et al. [2023] proposes to classify semi-supervised learning methods into the following
categories:

• Deep generative methods learn a joint distribution over the input data and the labels, al-
lowing them to generate new samples from the learned distribution.

• Consistency regularization methods encourage the model to produce similar predictions
when unlabeled data is perturbed or augmented in different ways. By minimizing con-
sistency losses, these models tend to move the decision boundaries away from dense
regions of unlabeled data. This helps improve performance, especially on image classi-
fication tasks, where points in the same cluster usually belong to the same class [Zhai
et al., 2019].

• Graph-based methods model the relationships between labeled and unlabeled data as a
graph, where nodes represent data points and edges represent similarities. These meth-
ods propagate label information from labeled to neighboring unlabeled nodes.

• Pseudo-labeling methods involve using a model trained on labeled data to assign predicted
labels to unlabeled examples, which are then treated as if they were true labels during
further training [Grandvalet and Bengio, 2004; Lee, 2013].

• Hybrid methods mix and match the above approaches.

In this thesis, we employ pseudo-labeling techniques to refine the downstream task model
after the self-supervised pretraining step.



14 2.3 Learning with Limited Labeled Data

2.3.3 Complementary Paradigms for Data-Efficient Learning

Beyond SSL and semi-supervised learning, many other paradigms have been proposed to lever-
age limited labeled data effectively. These approaches often complement SSL and semi-supervised
learning, providing additional strategies to improve model performance in data-scarce scenar-
ios.

Transfer Learning

Transfer learning is a general concept that covers techniques where knowledge learned in a
specific setting is transferred to a different but related one. In the context of this thesis, we are
particularly interested in transferring from a source domain where labeled data is abundant to
a target domain where labeled data is scarce or unavailable. The intuition at the basis of many
deep learning approaches is that early layers of deep neural networks capture general features
that can be useful across different tasks, while later layers are more task-specific. This learning
approach can dramatically reduce the amount of labeled data needed for training in the target
domain [Ek et al., 2025].

Based on this concept, networks are typically separated into two parts: a deep feature ex-
tractor, which is trained on the source domain, and a simple classifier, which is trained on
the target domain using the features extracted by the first part. Other approaches, such as fine-
tuning, adjust the weights of the complete model, using pretraining as initialization for learning
on the target domain data. This is particularly useful when the source and target domains are
similar, such as in cases of personalization, where the model is first trained on a large dataset
and then adapted to a specific user or context [Guo et al., 2019; Dhekane and Ploetz, 2025].

Few-Shot Learning

Few-shot learning (FSL) addresses scenarios where new classes or tasks must be learned from
very few labeled examples, typically ranging from one to a handful of examples per class. In
this context, the typical gradient descent update fails to produce meaningful loss improvements,
since the number of examples is too low to constrain the error landscape.

At the core of FSL is the idea of meta-learning, where the model learns from a few examples
by adapting to related tasks. It works on two levels: a base-level where the model is trained on
individual tasks, and a meta-level where it learns to adapt quickly to new tasks by extracting
common patterns and principles from its experience [Vinyals et al., 2016; Parnami and Lee,
2022]. In this setting, the meta-learner model is used to update the learner model parameters
such that they perform better than before.

In this thesis, we will test our methods in a few-shot learning scenario, where very few
labeled examples are available for the target task. We will, however, not focus on specific
meta-learning aspects, but rather on leveraging the self-supervised representations learned in
the pretraining step and fine-tuning using pseudo-labeling. Extending our work with few-shot
learning techniques is an interesting direction for future work.

Active Learning

Active learning, also known as query learning, is a paradigm that allows the model to actively
select the most informative examples to be labeled by an oracle (e.g., a human annotator).



15 2.3 Learning with Limited Labeled Data

In practice, active learning methods rank unlabeled samples by some measure of informative-
ness and then query the oracle to label the most useful ones. This way, the number of labeled
examples is gradually increased, without the need to fully label the entire dataset, thus re-
ducing the labeling effort and cost [Li et al., 2025a]. Common strategies include uncertainty
sampling (querying samples where the model is least certain about the prediction), query-by-
committee (maintaining multiple models and querying samples where they disagree the most),
and expected model change (querying samples that would most change the model if labeled)
[Li et al., 2025a].

We do not employ active learning in this thesis, but future work could focus on introducing
it in the supervised downstream phase. This would allow to identify classes requiring more
labeled examples and to further improve quality with the minimum additional manual labeling
effort.

2.3.4 Multitask Learning for better embeddings

Many of the previously discussed methods aim to learn embeddings for capturing essential
patterns in the data, but in practice they do so by focusing on a single task. Although strong
performance and generalization can be expected when the target task closely resembles the
pre-training task, this assumption does not always hold.

Multitask learning (MTL) is a sophisticated machine learning paradigm that aims to enhance
the performance of multiple related tasks by leveraging shared information among them [Zhang
and Yang, 2017]. This approach takes inspiration from the human cognitive process, where
knowledge gained from one task, such as playing squash, can be effectively transferred and
applied to improve skills in a related domain, like playing tennis [Zhang and Yang, 2022]. In
the context of learning with limited labeled data, MTL can be particularly beneficial as it allows
to create generalizable and efficient models that grasp multiple aspects of the data, thus creating
more robust representations, moving beyond task-specific models.

Unlike transfer learning, where the primary goal is to improve performance on a specific
target task using knowledge from a source task, MTL treats all tasks equally, aiming to learn a
shared representation that benefits all tasks simultaneously [Zhang and Yang, 2022].

The general approach is to devise task-specific models and combine them into a single net-
work that can learn from all tasks at once. In practice, MTL models share information in dif-
ferent ways. A common method is hard parameter sharing, where most layers in the model are
shared across tasks, while only the final layers are task-specific. This works well when the tasks
are strongly related and helps reduce overfitting. When tasks are less similar, soft parameter
sharing can be used. In this approach, each task has its own model, but their parameters are en-
couraged to be similar using regularization [Yu et al., 2024]. Over time, MTL has evolved from
simple shared layer models to complex and flexible architectures that can handle multimodal
and cross-domain data [Zhang and Yang, 2022].

One of the critical challenges in MTL is how to combine the losses from individual tasks into
a single objective for optimization. The most straightforward approach is to simply sum the
losses of all tasks:

Ltotal =
T
∑

t=1

Lt (2.7)

whereLt is the loss for task t, and T is the total number of tasks. This naive approach is simple,
but it does not account for the varying importance or difficulty of different tasks. One task may



16 2.3 Learning with Limited Labeled Data

dominate the learning process due to its loss scale, leading to poor performance on other tasks.
To address this, task weighting can be applied, where each task’s loss is multiplied by a weight
that reflects its importance or difficulty:

Ltotal =
T
∑

t=1

wtLt (2.8)

where wt is the weight for task t. However, determining the optimal weights can be challenging.
In the simplest approaches, weights are fixed, manually set by experts or simple rules, such
as inversely proportional to training set size [Perera et al., 2018]. Although this method is
conceptually simple, it often requires either an extensive grid search to tune the weights or
relies on heuristics [Sener and Koltun, 2018a; Cipolla et al., 2018]. One of the key challenges
is that in MTL, there is no universally optimal solution that leads to the best performance across
all tasks, as improving one task may lead to a decrease in performance on another [Sener and
Koltun, 2018a].

Dynamic weighting algorithms have been proposed to address this issue, where the weights
are adjusted during the training process. Cipolla et al. [2018] introduced a method that learns
the weights based on the homoscedastic or task-dependent uncertainty. The underlying prin-
ciple is to train the model to prioritize learning from tasks with lower uncertainty, since their
learning signals are more reliable. In the paper, the authors showcase an example of a multi-
task model that combines classifications with regression tasks. For that case, the loss function
is derived as follows:

Ltotal =
K
∑

k=1

�

1

2(σreg
k )

2
L reg

k + logσreg
k

�

+
J
∑

j=1

�

1

(σclass
j )2
L class

j + logσclass
j

�

(2.9)

whereσreg andσclass are the learnable weights for the regression and classification tasks, re-
spectively, andLreg andLclass are the corresponding losses. In addition to weighting the losses,
they also introduce logarithmic regularization terms. Without these terms, the weights would
diverge towards infinity, minimizing the overall loss but rendering the whole process meaning-
less. This method allows for automatic and optimal learning of the task weights without the
need for heuristics or extensive grid search for tuning. We will use it in our experiments to com-
bine multiple self-supervised pretraining tasks with the goal of learning a more generalizable
representation.

Other methods have also been proposed to dynamically balance task contributions. Dy-
namic Task Prioritization (DTP) [Guo et al., 2018] increases the weight of underperforming
tasks by tracking their performance with moving averages and integrating this into a focal loss
formulation to focus on harder tasks. If some tasks are way more difficult than others, DTP may
erroneously over-focus on them, leading to suboptimal convergence. Instead of directly con-
trolling the magnitude of individual loss values, Loss Scale Balancing (LSB) [Lee et al., 2021]
periodically balances the "loss scale", defined as the product of a loss value and its corresponding
weight. This approach has been shown to be particularly effective for pixel-wise vision tasks.
Loss Discrepancy Control for MTL (LDC-MTL) [Xiao et al., 2025] first normalizes the task losses
to a guessed common scale (e.g., dividing by the initial loss and applying logarithmic scaling),
then minimizes the weighted sum of the normalized losses and optimizes the task weights.

One critical issue in MTL is the interference between gradients from different tasks. When
tasks are not aligned, their gradients can conflict, and a simple summation of these gradients



17 2.4 Federated Learning

can result in an update vector that moves in a direction that is not beneficial for one or more
losses, potentially causing a specific loss to increase even if the aggregated total loss decreases.

GradNorm [Chen et al., 2018] addresses the problem through the introduction of a penalty
term that discourages the gradients of the tasks from being significantly different from the av-
erage. More recently, PCGrad [Yu et al., 2020] has been proposed to mitigate gradient conflicts
by projecting the gradients of each task onto the normal plane of the other task gradients, thus
reducing interference.

Several authors have, instead, proposed to avoid creating a single objective function. Multi-
Objective Optimization (MOO) methods explicitly seek a Pareto-optimal solution, where no
task can be improved without degrading another [Sener and Koltun, 2018b]. In this context,
methods like the Multiple Gradient Descent algorithm (MGDA) [Désidéri, 2012] are used to
determine a common descent direction for the shared parameters by combining individual task
gradients. While MGDA is powerful, it struggles with scalability in deep learning due to the
high dimensionality of gradients and the computational overhead of computing gradients for
each task separately [Désidéri, 2012]. To mitigate this, newer methods optimize efficient upper
bounds on the multi-objective loss using a single backward pass. This approach dynamically
balances tasks and resolves gradient conflicts more effectively than static or heuristic weightings
[Sener and Koltun, 2018b].

In our context, MTL is used with the objective of learning powerful and robust embeddings,
rather than achieving optimal performance on each individual pretraining task. We thus employ
dynamic weighting, which is flexible enough to define a combined target loss function without
requiring manual hyperparameter tuning.

2.4 Federated Learning

Independent of the specific learning technique employed, there is a need to construct models
from large sets of examples, labeled or not, possibly originating from various sources (e.g.,
different users, organizations, or devices).

When working with sensitive data, such as personal sensor data, it is often not possible to
share the data with a central server for training. FL is a distributed machine learning approach
that allows training models while keeping the data on the local devices.

In the following, we will first introduce the main concepts of FL, and then provide an
overview of the specific adaptations for self-supervised and semi-supervised settings.

2.4.1 Standard Federated Learning

FL emerged around 2016 with several foundational works [Shokri and Shmatikov, 2015; Konečný
et al., 2016, 2017; McMahan et al., 2017] that originated a subfield of research within machine
learning [Aledhari et al., 2020; Zhang et al., 2021; Huang et al., 2024]. The main concept is
to keep the data locally while only sharing the model parameters or other derived information
with a central server that coordinates the training process to build a global knowledge (see
Figure 2.3).

The first and most widely used method, called Federated Averaging (FedAvg) [McMahan
et al., 2017], combines local stochastic gradient descent (SGD) performed independently on
each client with a central server that periodically averages the resulting model updates.



18 2.4 Federated Learning

Train on local data

Train on local data

Train on local data

Aggregation
Server

Global model

⋮

Client 1

Client 2

Client n

⋮

Figure 2.3. Federated Learning pipeline.

The training process is performed in rounds. In each round, the server sends the current
global model parameters to all available clients. Each client then performs local training on
its own data, traditionally using stochastic gradient descent (SGD) or other optimization algo-
rithms such as Adam [Kingma and Ba, 2014]. After a few local epochs, the clients send the
updated local models to the central server. The server then averages the local models to obtain
a new global model, which is then sent back to the clients for the next round of training. This
process continues until convergence or until a predefined number of rounds is reached. The
method still works well even if some clients don’t take part in every round, making it flexible
and able to handle client dropouts or failures.

Since the introduction of FedAvg, many advances have been made to improve FL in various
aspects, in particular tackling communication efficiency [Nariman and Hamarashid, 2025], but
also generalization from locally updated heterogeneous clients, robustness to attacks from ma-
licious clients, and fairness in the allocation of resources [Kairouz et al., 2021; Huang et al.,
2024].

In this thesis, we will focus on the standard FL setting using Adam [Kingma and Ba, 2014]
as a local optimizer.

2.4.2 Federated Learning with Limited Supervision

FL was originally developed with the core motivation to enable collaborative learning while
preserving data privacy in supervised settings, where each client has access to correctly labeled
data. However, this is common in cross-silo federated settings, where large organizations col-
laborate to train a model, but is often unrealistic in cross-device FL, where a large number of
clients participate in the training and users have to actively interact to properly annotate their
local data [Lubana et al., 2022]. For this reason, FL has been extended to work with limited
supervision, by designing federated implementations of standard SSL approaches [Jin et al.,
2023].

Similar to MTL (see subsection 2.3.4), locally optimizing clients on their own data could lead
to diverging gradient updates, especially when the data is very heterogeneous across clients. A
typical situation is when each client has only information on only one or few particular classes



19 2.5 Closing Remarks

of data and no information on many others. In HAR, for instance, we could have clients with
running and walking examples, and other clients with cycling or sitting, but no client with ex-
amples of all classes. To address this, several techniques have been introduced that increase
the information exchanged between clients and server. Examples of approaches include sharing
embeddings between clients and server [Zhang et al., 2023b], or between clients, using them as
negative examples in the local contrastive training [Wu et al., 2022]. These approaches, how-
ever, can lead to privacy concerns and potential data leakage. Moreover, from client-specific
embeddings, it may be possible to revert the representations to reconstruct original data [Doso-
vitskiy and Brox, 2016; Nash et al., 2019].

For these reasons, several approaches have tried to achieve federated unsupervised learning
for very unbalanced client data distribution while minimizing the information exchanged. One
prominent example is Orchestra [Lubana et al., 2022], in which clients send to the server, to-
gether with the model updates, local centroids that partition the data into equally sized clusters.
The server then uses these centroids to compute a global clustering, which is then sent back to
the clients that use them to improve local training with non-local information.

The main subject of this thesis is learning with limited supervision, and in particular SSL
and MTL. For this, we also demonstrate the feasibility of an implementation in a federated set-
ting. Our results show that it is possible to achieve reasonable performance using standard FL
techniques. This is because, in our case, the clients have sufficient broad information for the
local training (see chapter 7). Integrating our solutions with advanced self-supervised FL tech-
niques, such as Orchestra, and testing them for challenging data distributions is an interesting
direction for future work.

2.5 Closing Remarks

HAR, which consists of recognizing human activities from sensor data, is a prominent example
of learning in scenarios where data is distributed, heterogeneous, and scarcely labeled. The
main focus of this work is to evaluate how it is possible to learn effective representations in
these settings.

To do that, we will employ and extend state-of-the-art solutions in SSL and MTL. In partic-
ular, we will evaluate the performance of different SSL pretraining tasks and investigate how
combining multiple pretext tasks and contrastive representations may lead to better inference
performance, especially in few-shot learning scenarios. We will also explore the possibility of
using pseudo-labeling techniques to further refine the downstream task model after the self-
supervised pretraining step. We will test our methods in a federated setting, where the data
is distributed across multiple clients. This is particularly relevant in fields like HAR, where
collected data is often sensitive and sharing it is not feasible due to privacy concerns. HAR is
definitely not the only domain where the need to leverage unlabeled data is crucial, and the
methods we will develop can be applied to other domains as well. We will show in particular
how to adapt our framework for image recognition tasks.



20 2.5 Closing Remarks



Chapter 3

Data and Experimental Set-up

This thesis will introduce and compare techniques for leveraging unlabeled
data to improve the performance of machine learning models. The meth-
ods are general but will be benchmarked on HAR tasks, where dealing with
limited labeled data is a common challenge. In this chapter, we will provide
details on the data used consistently across all experiments and the testing
methods employed.

3.1 Introduction

The main objective of this thesis is to explore how to exploit unlabeled data to improve the
performance of machine learning models in scenarios where labeled data is scarce. This is par-
ticularly relevant in many real-world applications, where collecting labeled data is expensive,
time-consuming, or unfeasible due to the sensitive nature of the data. The techniques discussed
and proposed are applicable to any domain, but to provide a concrete example, we focus mostly
on HAR, which is a good fit for this purpose (see section 2.2).

To ensure a fair comparison of the proposed methods, we will use the same dataset and
testing protocol throughout the thesis, unless specifically indicated. This allows us to isolate
the effects of the different techniques and provide a clear evaluation of their performance.
Even though the focus is on unlabeled data, we need a fully curated dataset to perform the
evaluations. The field of HAR has a rich literature, with many benchmark datasets available.
Prominent examples include the PAMAP dataset [Reiss and Stricker, 2012], which collects data
from multiple IMU sensors worn on the body and a heart rate monitor, and the WISDM dataset
[Kwapisz et al., 2011], which comprises accelerometer data collected from smartphones (and
optionally smartwatches) worn by users during various daily activities. Other datasets differ
in the type of sensors, wearable devices, and the activities performed. For instance, several
datasets contain data collected from non-standard wearable devices, such as smartglasses (e.g.,
OCOsense [Emteq Labs, 2022]) or earbuds (e.g., USI-HEAR [Laporte et al., 2024]).

For the HAR experiments in this thesis, we have chosen the UCI HAR dataset [Anguita
et al., 2013]. It consists of accelerometer and gyroscope data collected from smartphones worn
by participants. The dataset is publicly available and has been extensively used in previous
research, making it a suitable choice for evaluating the proposed techniques. The characteristics
of the dataset are described in section 3.2.

21



22 3.2 UCI HAR Dataset

The dataset is typically employed in fully supervised learning settings. Since we are inter-
ested in sparse labeling scenarios, we will need to split the data into a sparsely labeled training
and validation set, and a fully labeled test set. The splitting technique is presented in section 3.3,
which also describes the full testing protocol. To evaluate the generality of the proposed meth-
ods, we will also extend the analysis to the image recognition domain. The data and methods
used for this purpose are described in chapter 8.

3.2 UCI HAR Dataset

The UCI HAR dataset [Anguita et al., 2013] was collected from 30 participants who performed
six different activities (walking, walking upstairs, walking downstairs, sitting, standing, and
lying) while wearing a smartphone (Samsung Galaxy S II) on their waist. It includes three-axis
accelerometer (linear acceleration) and gyroscope (angular velocity) data, which were recorded
at a frequency of 50 Hz.

The raw data was preprocessed to reduce noise using a median filter and a 3rd order low-
pass Butterworth filter with a cutoff frequency of 20 Hz. The acceleration signal was separated
into body acceleration and gravity components using another Butterworth low-pass filter with
a corner frequency of 0.3 Hz, assuming that the gravitational force has only low-frequency
components. The 9 signals (3-axis body acceleration, 3-axis gyroscope, and 3-axis gravity)
were then sampled in fixed-width sliding windows of 128 samples (2.56 seconds) with a 50%
overlap between them, resulting in a total of 10,299 samples.

Two different sample representations are provided: one with the raw sensor (9 channels of
128 samples each) and a second one with a feature vector (561 values) extracted from the raw
data. The features were computed using a combination of time-domain and frequency-domain
analyses (see Table 3.1), resulting in a rich representation of the participants’ movements. They
include statistical measures such as mean, standard deviation, and energy, as well as frequency-
domain features obtained through Fast Fourier Transform (FFT).

Feature Description

mean() Mean value
std() Standard deviation
mad() Median absolute deviation
max() Largest value in array
min() Smallest value in array
sma() Signal magnitude area
energy() Energy measure. Sum of the squares divided by the number of values.
iqr() Interquartile range
entropy() Signal entropy
arCoeff() Autoregression coefficients with Burg order equal to 4
correlation() Correlation coefficient between two signals
maxInds() Index of the frequency component with largest magnitude
meanFreq() Weighted average of the frequency components to obtain a mean frequency
skewness() Skewness of the frequency domain signal
kurtosis() Kurtosis of the frequency domain signal
bandsEnergy() Energy of a frequency interval within the 64 bins of the FFT of each window.
angle() Angle between two vectors.

Table 3.1. List of measures for computing feature vectors [Anguita et al., 2013].

The dataset is split into a training set and a test set. 70% randomly selected users (21 out



23 3.3 Experimental Setup

Activity
Training Set Test Set

Samples Percentage Samples Percentage

Walking 1226 16.8% 496 16.8%
Walking Upstairs 1073 14.6% 471 15.9%
Walking Downstairs 986 13.4% 420 14.3%
Sitting 1286 17.5% 491 16.7%
Standing 1374 18.7% 532 18.2%
Laying 1407 19.1% 537 18.2%

Table 3.2. Distribution of activity labels in the UCI HAR dataset for both training and
test sets. The dataset shows a relatively balanced distribution across the six activity classes
with slight variations in the number of samples per activity. The percentages are calculated
based on the total number of samples in each set.

of 30) are included in training, while the remaining 30% (9 users) are used for testing. This
results in 7,352 training samples and 2,947 test samples. Table 3.2 illustrates the distribution
of activity labels in both sets. As can be seen, the dataset is relatively balanced, with the most
represented activity being Laying (19.1%) and the least represented being Walking Downstairs
(13.4%). The distribution of activity labels stays consistent across both sets, ensuring that the
model is trained and evaluated on a representative sample of the data.

3.3 Experimental Setup

The UCI HAR dataset offers a solid foundation for evaluating our methods, but needs to be
adapted to fit our sparse labeling scenarios. We need, in particular, to define labeled and unla-
beled data partitions and validation strategies.

Moreover, to ensure fair and consistent evaluation across all experiments in this thesis, we
have established a standardized testing protocol that is applied uniformly to all methods and
approaches presented in subsequent chapters.

3.3.1 Creating a Limited Labeled Data Scenario

The original split of the UCI HAR dataset into training and test sets is maintained, but it is
insufficient for our purposes. We keep the testing set unchanged, but adapt the training set to
simulate scenarios with limited labeled data availability.

As introduced in section 2.2, our techniques are self-supervised, requiring two phases: a
pretraining phase on massive amounts of unlabeled data and a downstream training phase
on a smaller set of labeled data. To simulate this situation, we create a pretraining dataset
by exploiting the entire training set, stripped of the labels. We then create, from the original
training set, a series of labeled data regimes for the downstream training phase by systematically
reducing the number of labeled samples available. To test realistic scenarios, we randomly
select a fixed number of samples per activity per user at each regime, keeping all the users and
activities. Since we are interested in evaluating the performance in challenging situations, we
start from just one sample per user per activity (126 samples in total) and increase the number
up to six with a step of one. As a result, we obtain the six sparsely labeled data regimes shown
in Table 3.3. We also include a full dataset regime (7,352 samples) where the entire training



24 3.3 Experimental Setup

set is used to establish an upper bound on performance. Data selection is performed in such a
way that the same samples are used across all methods, ensuring a fair comparison.

Regime Labeled Samples Training Samples Validation Samples

1 126 96 30
2 252 192 60
3 378 288 90
4 504 384 120
5 630 480 150
6 756 576 180
Full Dataset Regime 7352 5583 1769

Table 3.3. Summary of labeled data regimes used in the experiments. Each regime specifies
the number of labeled samples available for training and validation, simulating scenarios
with varying amounts of labeled data. The full dataset regime uses all available labeled
training data.

3.3.2 Cross-Validation Strategy

All experiments are conducted using a 5-fold cross-validation approach on the training set,
splitting the training set into training and validation sets based on the user IDs and a fixed
random seed. For each fold, the 21 users in the training set are randomly divided into two
groups: 16 users for training and the remaining 5 users for validation. The original test set,
containing data from the other 9 users, remains fixed throughout all experiments and is only
used for final evaluation to prevent any form of test set contamination. We apply the same
cross-validation strategy to the pretraining and downstream training phases.

3.3.3 Training Configuration

The methods are implemented in PyTorch using a modular approach, allowing for easy inte-
gration of different methods and simplifying the configuration of the training parameters (see
Appendix A). Unless explicitly discussed, we use the same configuration for all methods.

During the pretraining phase, the SSL training aims to learn robust representations from
the unlabeled data. As will be discussed in subsection 5.3.4, we observed that saving the best
performing model based on pretraining loss may lead to worse results in the downstream task
compared to simply saving the model obtained after a fixed larger number of epochs. There-
fore, to set a consistent measure for all methods, we train all SSL encoders for a fixed number
of epochs (typically 200) and select the model based on the best validation accuracy on the
downstream task.

During downstream training, the pretrained encoder weights are frozen, and only the clas-
sifier head parameters are updated. This approach ensures that the learned representations
from the pretraining phase are preserved while allowing the classifier to adapt to the specific
HAR task. The downstream classifier is trained for a maximum of 100 epochs. After training,
the best model is selected based on the validation accuracy and evaluated on the fixed test set.



25 3.4 Closing Remarks

3.3.4 Evaluation Metrics

Model performance is evaluated using two primary metrics: accuracy (the percentage of cor-
rectly classified samples) and macro-averaged F1 score (the unweighted mean of F1 scores
across all activity classes). Both metrics are computed on the fixed test set after training is
complete. For statistical robustness, all numerical results are reported as mean ± standard de-
viation over the 5 cross-validation folds. In the plots, we report the mean with a line along
with its 90% confidence interval as shaded areas. For simplicity, we will refer to accuracy as
the primary metric as, due to the balanced nature of the dataset, F1 mostly reflects the same
trends as accuracy.

3.3.5 Hyperparameter Selection

The hyperparameters used throughout this thesis are either adopted from established literature
or selected through limited training runs. Given that it is not the main focus of this work, we de-
liberately avoid extensive hyperparameter optimization to ensure that our comparisons reflect
the intrinsic capabilities of different methods rather than the quality of hyperparameter tun-
ing. For SSL methods, we use standard hyperparameter values reported in the original papers
when available, for example, trade-off weights between variance, invariance, and covariance
regularization in VICReg (see Equation 2.6). For novel combinations and multitask approaches,
we perform a limited search over key parameters (e.g., embedding dimensions) as discussed in
the specific chapters (see chapter 5). This standardized protocol ensures that all comparisons
presented in this thesis are fair, reproducible, and representative of real-world scenarios where
labeled data is scarce and computational resources are limited.

3.4 Closing Remarks

The UCI HAR dataset and experimental setup described in this chapter will be used consis-
tently throughout this thesis to evaluate and provide a fair comparison of the proposed and
tested methods. The only exception is the preliminary evaluation in the image recognition
domain, which is discussed in chapter 8. For reproducibility information and further details,
Appendix A provides links to the development repository, implementation details, and notes on
the computing infrastructure used.



26 3.4 Closing Remarks



Chapter 4

Self-Supervised Learning

We analyze the behavior of different SSL techniques under specific condi-
tions in the low-labeled data regime, showing how they outperform tradi-
tional supervised training when the amount of labeled data is limited. In the
next chapter, we will further improve the performance by combining multi-
ple pretraining tasks together to create better embeddings.

4.1 Introduction

As discussed in chapter 2, SSL has emerged as a powerful approach for learning useful repre-
sentations from unlabeled data, producing embeddings applicable to a variety of downstream
tasks. In this work, the specific problem is classifying human activities from sensor data, which
in a self-supervised framework is addressed in two stages: first, pretraining an encoder on
large amounts of unlabeled data, and then combining it with a small classifier trained on a
small dataset of labeled examples. The embedding produced by the encoder strongly depends
on its training techniques.

In this chapter, through extensive experimentation, we explore different SSL pretraining
tasks and their impact on the quality of the learned representations. This is done within a
unified framework that allows us to easily compare different methods and their performance.
In the following, we describe the overall architecture, the selected pretraining tasks, and the
results obtained.

4.2 Architecture

SSL pretraining can be realized through various pretraining tasks, each with its own training
objective. In their architectures, all tasks include an encoder that learns to extract meaningful
features from the input data, creating an embedding. The embedding is then exploited by
task-specific heads to solve the pretraining problem. After pretraining, the encoder is frozen
and used to generate embeddings for a downstream classifier that solves the actual task of
interest. Figure 4.1 illustrates our general architecture for SSL pretraining and downstream
classification. The architectural components are detailed in the following sections.

27



28 4.2 Architecture

Downstream Training with Labeled Data

Frozen
Encoder

Pretraining Examples with Unlabeled Data

Downstream Task

Encoder

Task-Specific head

Encoder
Features
Encoder

Projection

Task-Specific Loss VICReg Loss

Encoder

A B C

Figure 4.1. SSL setup overview. (A) Example of an architecture for pretraining with task-
specific approaches (e.g., augmentation classification, reconstruction) where the encoder
learns representations using a task-specific head and loss function on unlabeled data. (B)
Pretraining with multimodal contrastive learning (VICReg with features), involving the
encoder, a projection head, a designed feature encoder architecture that maps the other
input modality to the same space as the main data branch, and a specialized contrastive loss.
(C) The encoder from A or B is frozen and used to generate embeddings for a downstream
supervised classification task.

4.2.1 Encoder

The goal of this thesis is not to find or develop the best encoder, but rather to use an encoder
that works decently well as a common baseline across all the tested and proposed methods. We
will thus use the same encoder for all the methods developed and evaluated in this work. Prior
work has shown that Fully Convolutional Networks (FCN) are effective for HAR tasks and have
demonstrated good performance on the UCI HAR dataset [Qian et al., 2022]. We will then use a
similar architecture with the following configuration: the input layer takes 9×128 scalar values,
representing the readings of the 9 sensor channels of a temporal window of 128 samples. The
encoder consists in 3 convolutional blocks. Each block applies a 1D convolution with kernel
size 8 (and increasing channel sizes: 32, 64, and 128), followed by batch normalization, ReLU
activation, and temporal downsampling via max-pooling. A dropout rate of 0.35 is applied after
the first block to prevent overfitting. After the last block, adaptive average pooling is applied
to reduce the output to a desired size (typically 128). We later show in subsection 5.3.6 that
increasing the embedding size does not significantly improve the performance.

It should be noted that the specific encoder architecture choice does not significantly change
the findings presented in this thesis, as demonstrated by an ablation study (see subsection 5.3.5).

4.2.2 Downstream Classifier

The downstream classifier is responsible for taking the embeddings produced by the encoder
and making predictions for the HAR task. We consistently use the same classifier in all the
experiments. It consists of a fully connected layer that maps the embedding to a hidden size of
512, followed by ReLU activation, 0.3 dropout rate, and a final fully connected layer that maps
the hidden size to the number of classes (6 for the UCI HAR dataset). Since it is out of scope



29 4.3 Pretrain Tasks

for this thesis to find the best classifier configuration, we did not perform any hyperparameter
optimization.

4.2.3 Supervised Baseline

To showcase the effectiveness of the self-supervised methods, we will use a supervised baseline
that uses solely the labeled data for training. It consists of the encoder followed by the down-
stream classifier. Different from all the other SSL methods, the encoder is not pretrained, but
it is trained from scratch together with the classifier.

4.2.4 Self-Supervised Variations

Each of the self-supervised methods has its own specific architecture, but they all share the same
encoder and downstream classifier. The individual architectures are described in the following
sections.

4.3 Pretrain Tasks

As discussed in chapter 2, multiple methods have been proposed to train an encoder in a self-
supervised manner. In this section, we briefly describe the different tasks and methods tested
in this thesis, which include both pretext tasks and contrastive learning approaches.

Pretext tasks indirectly guide the model to learn useful representations by solving specifically
designed problems. Alternatively, contrastive learning paradigms explicitly guide the model
to learn representations with certain imposed characteristics by bringing different augmented
views of the same input closer together in the embedding space while pushing apart representa-
tions of differing samples. These approaches encourage the encoder to capture the underlying
structure of the data, resulting in embeddings that are more effective for downstream tasks like
HAR.

The goal is to create a good embedding that can be used for the downstream HAR task.
Different pretrain tasks can learn different aspects of the data, thus creating different embed-
dings. In this chapter, we test them individually, while in the next chapter, we will explore their
combinations.

4.3.1 Pretext Tasks

Among the many pretext tasks proposed in the literature (see section 2.3.1), we have selected
classifying augmentations and reconstruction of a masked input as our primary tasks since they
are commonly used and have shown good performance in previous work [Haresamudram et al.,
2022; Logacjov, 2024; Zhang et al., 2024].

Classifying Augmentations

One of the simplest pretext tasks is to train a model to identify whether signal transformations
are applied to the data or not. Saeed et al. [2019] first used this method to explore SSL on HAR
accelerometer data. Their approach involves a multitask learning setup with a separate head
for each transformation.



30 4.3 Pretrain Tasks

Our implementation is inspired by their work, but we simplify it by using a single head
serving as a classifier for all transformations. The transformations used are inspired by the
work of Qian et al. [2022] and include both time and frequency domain augmentations:

• No augmentation: the original signal, used as a baseline.

• Negate: inverts signal sign.

• Shuffle: randomly shuffle the sensor channels (per sample) to test channel invariance.

• Scale: amplify each channel by a randomly generalized distortion with a mean of 2 and
standard deviation of 1.1.

• Time Flip: reverses signal along the time axis.

• Rotation: applies a 3D rotation to each tri-axial sensor reading by rotating it around a
randomly selected axis using an angle drawn uniformly from −π to π.

• Permute: split the signal into up to 5 random segments along the time axis, and shuffle
their order.

• Resample: upsample with linear interpolation the signal to 3 times its original frequency,
then randomly downsample it to its original shape.

• Time Warping: warps the signal in time using smooth cubic splines, randomly stretching
it.

• Permuted Jitter: applies permutation and jitter to the signal.

• Scaled Jitter: applies jitter and scale to the signal.

• High-Frequency Component (HFC): high-frequency component extraction via FFT mask-
ing.

• Low-Frequency Component (LFC): low-frequency component extraction via FFT mask-
ing.

• Phase Shift: randomly shifts the phase of the signal by a random amount uniformly
drawn from −π to π.

• Partial Amplitude Phase: applies Gaussian noise to amplitudes and random shifts to
phases within a randomly selected half-length segment of the frequency domain.

• Full Amplitude Phase: Perturbs amplitudes and phases across the entire frequency do-
main, using the same noise and phase shift ranges as in the previous method.

The model is composed of the FCN encoder, followed by two fully connected layers for
classification. The hidden layer has the same size as the embedding (typically 128) and uses
ReLU activation, while the output layer has a size equal to the number of transformations (16
in total).



31 4.3 Pretrain Tasks

Reconstruction

As shown in section 2.3.1, reconstruction-based methods have been widely used in SSL. The idea
is to train an encoder-decoder network that learns either the identity function or to reconstruct
the original signal from a damaged version of it. The network maps the input signal to a lower-
dimensional representation, and then reconstructs the original signal from this representation.
This approach encourages the model to include all the relevant information in the learned
representation, as it needs it for the reconstruction task.

In this thesis, we connect our encoder to a simple decoder that consists of three fully con-
nected layers mapping back to the original signal shape. The input to the decoder is the output
of the encoder (typically 128-dimensional). The following hidden layers have the size of 512
and 1024, while the output layer has the same size as the input (9 channels × 128 samples for
a total of 1152). The decoder uses ReLU activation in the hidden layers and no activation in
the output layer.

The masked input is created by randomly selecting a percentage of the input signal (50%)
and replacing it with zeros. The encoder-decoder model is trained to minimize the mean
squared error between the original signal and the reconstructed version from the masked input.

4.3.2 Contrastive Learning

CL has become one of the most popular approaches to SSL in recent years, as discussed in
section 2.3.1. In this thesis, we will use different CL methods, each with its own specific archi-
tecture and loss function.

Standard Contrastive Learning

The first method is a standard CL approach: the SimCLR method [Chen et al., 2020]. The model
consists of a FCN encoder, followed by a projection head that maps the learned representation
to a lower-dimensional space to reduce computational complexity. The projection head is com-
posed of two fully connected layers with a ReLU activation in between. The hidden layer has
the same size as the embedding (typically 128) and ReLU activation, while the output layer has
a size of 128.

At training time, the model sees two augmented views of the same input signal and learns
to maximize the similarity between the two views while minimizing the similarity with all other
views in the batch (see section 2.3.1). As in the original SimCLR paper, the contrastive loss is
computed using normalized temperature-scaled cross-entropy (NT-Xent) (see Equation 2.2).

VICReg

To test the performance of CL without negative examples, we selected VICReg [Bardes et al.,
2022; Shwartz-Ziv et al., 2023] that uses a loss function with variance, invariance, and covari-
ance terms to encourage the model to learn expressive representations (see section 2.3.1).

VICReg has the same architecture as for our SimCLR implementation, with the FCN encoder
followed by a projection head that maps the learned representation to a lower-dimensional
space of 128 dimensions.



32 4.4 Results

Contrasting with Features

All the previous approaches, based on pretext tasks or CL, take as input the raw sensor data.
Since VICReg readily supports different input modalities and architectures, we use it to contrast
the embeddings from raw sensor data with those extracted from expert features (see chapter 3),
which can be interpreted as a different representation space.

In this contrastive architecture, the first branch is identical to the standard VICReg use case,
while the second one needs a different encoder and projection head. Since the feature branch is
discarded after training, as it serves only to provide contrastive information, it is implemented as
a single network that maps features to the same output dimensionality of the raw data branch.
The input size is equal to the feature size (561). The two hidden layers are of size 512 and
256, with ReLU activation, and the output layer has a size of 128, matching the output of the
projector of the other branch.

4.4 Results

All the methods described are implemented in the same framework (see Appendix A), and were
tested on the same conditions on the UCI HAR dataset (see chapter 3).

Table 4.1 shows the downstream performance of the baseline supervised model and the dif-
ferent SSL approaches. For each method, we report the accuracy and F1 score (macro-averaged)
for different amounts of labeled training data, ranging from 1 sample per activity per user (126
labeled samples in total) to the full dataset (7352 labeled samples). Figure 4.2 provides a visual
representation of the accuracy for a more intuitive comparison.

The first notable finding is the clear advantage of SSL techniques relative to plain supervised
learning in low-data regimes. In the most demanding few-shot setting (1 labeled sample per
class per user, 126 labeled samples in total), the supervised baseline (red line in Figure 4.2)
achieves an accuracy of approximately 70%. In contrast, most SSL models start with accuracies
between 83% and 89%. The significant improvement (13-19 percentage points) demonstrates
the effectiveness of the embeddings learned by the SSL methods. The SL baseline lacks the pre-
training step and struggles to learn meaningful features from a small labeled dataset, resulting
in significantly lower performance.

As the number of labeled training examples increases, the performance gap between the
supervised baseline and the SSL methods narrows. When all the dataset is used for training, the
supervised baseline obviously aligns with the SSL methods, achieving a competitive accuracy
of 90.69%. It should be mentioned that this model is trained from scratch, while the other
classifiers freeze the encoder and only train the classifier on top of the learned embeddings.
This could make the model overfit to the training data as it has more parameters to train.
Bozkurt [2021] studied the performance of different architectures on supervised learning using
the fully labeled UCI HAR dataset and reported a maximum accuracy of 96.81% on the test set
using a Deep Neural Network (DNN). Without any optimization, the best SSL techniques are
not far from such a state-of-the-art performance, and better than several of the other surveyed
fully supervised methods [Bozkurt, 2021].

VICReg with identical branches, VICReg contrasting features with raw data, and SimCLR (re-
spectively in blue, cyan, and orange color in Figure 4.2) consistently form the best-performing
methods across all training data sizes ranging from 2 to 6 labeled samples per class per user
(252 to 756 labeled samples in total). They achieve accuracies of 89.38% to 91.14%. CL obtains
the best accuracy of 93.06% when trained with all the labeled data. An important finding is that



33 4.4 Results

Method Training Labels Accuracy F1 Score

Supervised Baseline

1 (126) 69.91 ± 3.80 0.68 ± 0.05
2 (252) 77.84 ± 7.29 0.77 ± 0.08
3 (378) 85.56 ± 2.10 0.85 ± 0.02
4 (504) 85.67 ± 0.93 0.85 ± 0.01
5 (630) 85.86 ± 1.69 0.86 ± 0.02
6 (756) 86.39 ± 0.71 0.86 ± 0.01

All (7352) 90.69 ± 2.08 0.91 ± 0.02

Classifying Augmentations

1 (126) 83.66 ± 1.70 0.83 ± 0.02
2 (252) 85.95 ± 1.05 0.86 ± 0.01
3 (378) 86.85 ± 0.72 0.87 ± 0.01
4 (504) 87.97 ± 1.06 0.88 ± 0.01
5 (630) 88.35 ± 0.78 0.88 ± 0.01
6 (756) 88.14 ± 0.77 0.88 ± 0.01

All (7352) 89.79 ± 1.24 0.90 ± 0.01

Reconstruction

1 (126) 86.18 ± 1.17 0.86 ± 0.01
2 (252) 88.22 ± 1.86 0.88 ± 0.02
3 (378) 88.44 ± 1.08 0.88 ± 0.01
4 (504) 88.75 ± 1.17 0.89 ± 0.01
5 (630) 89.16 ± 0.76 0.89 ± 0.01
6 (756) 89.72 ± 0.98 0.90 ± 0.01

All (7352) 90.02 ± 1.02 0.90 ± 0.01

Contrastive Learning (SimCLR)

1 (126) 84.92 ± 2.47 0.84 ± 0.03
2 (252) 89.70 ± 1.07 0.90 ± 0.01
3 (378) 90.38 ± 0.59 0.90 ± 0.01
4 (504) 89.77 ± 0.83 0.90 ± 0.01
5 (630) 91.16 ± 1.74 0.91 ± 0.02
6 (756) 91.56 ± 0.58 0.91 ± 0.01

All (7352) 93.02 ± 0.85 0.93 ± 0.01

VICReg

1 (126) 85.72 ± 3.76 0.85 ± 0.04
2 (252) 89.44 ± 1.09 0.89 ± 0.01
3 (378) 89.69 ± 2.02 0.90 ± 0.02
4 (504) 89.51 ± 2.23 0.89 ± 0.02
5 (630) 90.67 ± 2.20 0.91 ± 0.02
6 (756) 90.86 ± 1.06 0.91 ± 0.01

All (7352) 91.41 ± 1.07 0.91 ± 0.01

VICReg (features)

1 (126) 88.99 ± 0.93 88.99 ± 0.01
2 (252) 89.15 ± 1.55 89.15 ± 0.02
3 (378) 89.66 ± 1.62 89.66 ± 0.02
4 (504) 89.58 ± 0.78 89.58 ± 0.01
5 (630) 90.15 ± 1.23 90.15 ± 0.01
6 (756) 90.19 ± 0.88 90.19 ± 0.01

All (7352) 89.81 ± 1.32 89.81 ± 0.01

Table 4.1. Results of the different pretext tasks on the UCI HAR dataset. The results
(accuracy and macro-averaged F1 score) are reported as mean ± standard deviation over
5 runs. The numbers in parentheses indicate the number of labeled samples used during
pretraining. The encoders are pretrained for 200 epochs.



34 4.4 Results

1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) All (7352)
65

70

75

80

85

90

95

Training Regimes: Labeled Samples per User per Class (Total)

A
cc

u
ra

cy
(%

)

SL (Supervised)

CA (Classify Augmentations)

R (Reconstruction)

CL (Contrastive Learning)

VICReg (augmentations)

VICReg (with Features)

Figure 4.2. Results of the different pretext tasks on the UCI HAR dataset. Reported as
mean and its 90% confidence interval over 5 runs. Numbers in parentheses indicate the
number of labeled samples used for each experiment.

the VICReg (with features) method, which contrasts the raw sensor data with the handcrafted
features, is the most consistent across all training sizes, suggesting that additional engineered
features can guide the model to quickly learn useful representations. More importantly, it also
suggests that contrasting very different representations may lead to improved performance.
The same method also has the best performance in the most extreme low data regime, out-
performing the other SSL techniques by a significant margin. However, as more labeled data
becomes available, this method is slightly outperformed by the CL and standard VICReg ap-
proaches (achieving up to +2.5% accuracy). This suggests that while the guidance from the
hand-crafted features is helpful when data is limited, it may also prevent the model from dis-
covering the more refined representations that contrastive methods can extract from the raw
data alone.

Classify Augmentations and Reconstruction (green and magenta color in Figure 4.2) deliver
solid performance, but they do not reach the peak accuracies of the top-tier methods.

Consistency across the different folds is also an important aspect to consider. The supervised
model exhibits a high variance across the low-data regime, as indicated by the wide red shaded



35 4.5 Closing Remarks

area. This means its performance is highly sensitive to the specific small set of labeled samples
chosen for training. In contrast, the top-performing SSL methods (VICReg, CL) have much
tighter confidence intervals. This demonstrates that their pre-trained representations offer a
more robust and stable starting point, making the downstream training process less susceptible
to the randomness of small sample sets. This stability is a significant practical advantage, as it
implies more reliable performance.

4.5 Closing Remarks

This experiment demonstrated that SSL methods can significantly improve the performance of
HAR models, especially when labeled data is expensive or difficult to obtain. By leveraging
unlabeled data, SSL methods can successfully train powerful encoders that create useful and
robust feature representations. These representations give SSL methods a clear advantage over
traditional supervised techniques that are forced to learn with much less data available.

The various SSL techniques achieve similar performances while being driven by different
target objectives, which can be as different as pretext tasks or pure CL. This implies that poten-
tially very different internal representations can provide valuable results. In the next chapter,
we will see how performance can be further improved through a multi-task approach in which
multiple of the discussed techniques are combined together.



36 4.5 Closing Remarks



Chapter 5

Multitask Self-Supervised Learning

In the previous chapter, we explored how SSL methods can enhance the per-
formance of machine learning models, particularly in scenarios with limited
labeled data. Each SSL task grasps a different aspect of the data, leading
to diverse and complementary representations. This chapter highlights the
benefits of combining multiple SSL tasks to create a more comprehensive
and robust feature embedding and presents an extensive ablation study. The
next chapters will build on this foundation, exploring how this framework
can be further improved, trained while preserving privacy, and adapted to
different domains.

5.1 Introduction

The results presented in chapter 4 demonstrate how SSL methods can effectively learn powerful
representations from unlabeled data, and use them to successfully solve downstream tasks using
only a small amount of labeled samples. The tested techniques are highly diverse, as they
range from implicitly determining the encoded knowledge through pretext tasks to explicitly
constraining the internal representations through contrastive losses. Moreover, we have also
seen that multimodal input data (in particular raw data and expert features) can be successfully
leveraged.

The main goal of this chapter is to investigate if and how combining multiple of these repre-
sentations together during the learning phase may improve performance by capturing different
aspects of the data in a single embedding. This will be done in the framework of MTL (see sub-
section 2.3.4), where multiple tasks are trained simultaneously to optimize a shared objective.

Building on the same architectures presented in chapter 4, we propose a multitask model
(described in section 5.2) and extensively evaluate it (see section 5.3). In addition to presenting
the results achieved, we perform an extensive ablation study to analyze the impact of each
training choice and component on the final performance.

5.2 Architecture

To learn a rich and robust feature embedding, we propose an MTL architecture that combines
multiple SSL tasks. This model is designed to simultaneously learn from several diverse objec-

37



38 5.2 Architecture

tives. The architecture, illustrated in Figure 5.1, is modular, centered around a shared encoder
whose learned representations are fed into multiple task-specific heads. Each head is responsi-
ble for a different SSL task, allowing the model to learn complementary features from the data.
This modular design enables the addition or removal of tasks without affecting the overall ar-
chitecture, making it flexible and adaptable to various scenarios.

Encoder

Classification

Features
Encoder

xIVxI xII xIII xV

mask transform transformtransform features

batch

ContrastiveReconstruction Contrastive

original

x

Figure 5.1. Multitask Self-Supervised Learning architecture

At training time, for each batch, the original samples are augmented in different ways. For
each task, the corresponding view of the sample is passed through the shared encoder, which
generates a feature embedding. This embedding is then processed by the task-specific head,
which computes the loss for that particular task. For example, the reconstruction head requires
the masked input (x II in the Figure 5.1) to go through the encoder and the decoder, while the
contrastive head needs two transformations of the original sample (x III and x IV in Figure 5.1)
to be passed through the encoder, the contrastive projection head, and then compared.

To also include expert features in the training (xV in Figure 5.1), we use a different en-
coder to handle this modality (as discussed in subsection 4.3.2). The output of this encoder is
then contrasted with the original sample passed through the main encoder and the contrastive
projection head.

Then, a separate loss term is computed for each of the model outputs. In subsection 2.3.4,
we discussed several methods for combining the losses of different tasks: from the simple sum
of the losses to dynamic weighting or gradient-based approaches. In this work, the actual
performance of the model on the pretext tasks is not the main goal, but rather the quality of
the learned representations. For this reason, we avoid complex and computationally expensive
gradient-based methods and opt for dynamic weighting of the losses [Cipolla et al., 2018]. The
method assigns a different learnable weight to each task, which is updated during training, and
avoids collapse through a logarithmic regularization term (see Equation 2.9). This approach
allows to balance the contribution of each task to the overall loss, while keeping the training
process simple and efficient.



39 5.3 Results

As for the single-task SSL case, the encoder is frozen after the pretraining phase, and the
embeddings drive the training of the same downstream classifier introduced in subsection 4.2.2.

5.3 Results

One of the main objectives of this thesis is to introduce a simple yet effective multitask technique
to improve the pretraining phase of SSL methods. To evaluate its effectiveness, we first compare
the performance of the full MTL architecture presented in section 5.2 with the single-task SSL
methods discussed in chapter 4. We then analyze the impact of each task on the final perfor-
mance of the multitask model. This evaluation is simplified by the modularity of the approach,
where adding or removing a task translates to simply adding or removing the corresponding
task-specific branch and its loss term. As we will see, the experiments highlight the interest of
overfitting the encoder during pretraining. We discuss this aspect in subsection 5.3.4. Finally,
we perform an ablation study to evaluate the impact of different design choices, including mod-
ifying the encoder architecture (see subsection 5.3.5) and the embedding dimensionality (see
subsection 5.3.6).

5.3.1 Comparing with Single-Task SSL

In chapter 4, we explored various SSL pretext tasks and their impact on the quality of the
learned representations. In this section, we will compare the performance of single-task SSL
methods with the complete multitask SSL method proposed.

1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) All (7352)
80

85

90

95

Training Regimes: Labeled Samples per User per Class (Total)

A
cc

u
ra

cy
(%

)

MTL (Multi-task Learning)

CA (Classify Augmentations)

R (Reconstruction)

CL (Contrastive Learning)

VICReg (augmentations)

VICReg (with Features)

Figure 5.2. Comparison of single-task SSL methods with the multitask SSL method. The
plot shows the accuracy of the model as a function of the number of labeled samples used
for training, with different colors representing different SSL methods. We report the mean
and its 90% confidence interval over 5 runs.

Figure 5.2 visually compares the performance accuracy of the MTL model with the single-



40 5.3 Results

task SSL methods. The MTL model consistently outperforms the single-task methods across all
labeled data sizes. This comparison highlights that combining multiple SSL tasks not only leads
to a model as good as the best single-task SSL method but also provides additional information
to the model, allowing it to outperform the best single-task method in all scenarios. This demon-
strates that combining multiple SSL tasks can allow the model to learn different aspects of the
data, leading to a more comprehensive and robust feature embedding. The tasks are combined
with dynamic weighting. Figure 5.3 illustrates the evolution of the learned weights σi during
training by plotting the factor fi =

1
2(σ2

i )
applied to each task loss Li . For better readability,

the factors are reparameterized as percentages, so that the sum of all factors is always 100%.
As we can see in the first few epochs, the factors quickly vary to capture the different scales of
the losses, and after evolving more smoothly as the training progresses. The plot displays the
average value over 5 folds, with the shaded area representing the 90% confidence interval for
the mean, which is hardly visible since the weights are very stable across different runs.

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

Training Epochs

Ta
sk

C
on

tr
ib

u
ti

on
(%

)

CA (Classify Augmentations)

R (Reconstruction)

CL (Contrastive Learning)

VICReg (with Features)

Figure 5.3. Task contribution in percentage during training. The weights are dynamically
learned, allowing the model to adapt to the different scales and evolution of the task-specific
losses. The plot shows the evolution of the multiplying factors for each task as the training
progresses, with different colors representing different tasks.

The MTL model achieves an accuracy of 89.6% with only 126 labeled samples (1 labeled
sample per class per user), while the best single-task SSL method (VICReg with features) only
reaches 89.0%. The gap widens when more labeled samples are used, with the MTL model
proving its superiority even when all labeled samples are available, reaching 94.1% accuracy
compared to 93.0% for the best single-task method (CL). Moreover, the MTL is always the
best in all the regimes, from few-shot learning (126 labeled samples) to the full dataset (7532
labeled samples).

While this finding might look obvious, the situation is much more complex than what may
superficially seem. First of all, the large performance increase of MTL relative to the individual
techniques shows that each of the techniques extracts fairly different aspects of the data. Oth-
erwise, with very close-by embeddings, we would observe just an averaging effect. Second, it is



41 5.3 Results

not granted that combining very diverse solutions leads to a better performance. In particular,
as discussed in subsection 2.3.4, directions of improvements from different tasks may cancel
out.

5.3.2 Visualizing the Data Representations

To illustrate the effectiveness of the learned representations, Figure 5.4 visually compares the
raw data, expert features, and MTL embeddings using t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [Maaten and Hinton, 2008].

(a) Raw Data (1,161) (b) Expert Features (561)

(c) MTL Embeddings (128)

Activity
Walking
Walking upstairs
Walking downstairs
Sitting
Standing
Laying

Figure 5.4. t-SNE visualization of the data representations. The first two subfigures show
the raw data and expert features, while the last one shows the MTL embeddings. The
colors represent different activities.



42 5.3 Results

The t-SNE algorithm is a dimensionality reduction technique that helps visualize high-
dimensional data by projecting it into a lower-dimensional space, preserving local structures.
We projected the entire dataset into a 2D space, assigning a different color to each activity class.

Figure 5.4a displays projections of the raw data. As can be noted, most of the data is clut-
tered together, and the only visible separation is between Laying and the other activities. Several
of the Sitting instances are also slightly separated, but others are very close to other types of
activities. This highlights the difficulty of distinguishing activities directly from the raw data.

With expert features (Figure 5.4b), the separation is much improved, and in most cases, we
can identify clusters corresponding to each activity. This shows that the domain experts who
handcrafted the features were able to select ones relevant to the classification task. However,
we can also see that when clusters are well defined, there are situations where there is little
or no gap between clusters, making classification ambiguous in boundary areas. Moreover,
distinguishing between Sitting and Standing seems very difficult, as the instances of both classes
are mixed together.

Figure 5.4c shows the MTL embeddings extracted directly from unlabeled data with self-
supervised pretraining. As can be noted, the various classes are well clustered and well sepa-
rated. It is still challenging to distinguish some instances of Sitting and Standing, but the overall
separation is much clearer.

Additionally, it is important to note that the dimensionality of the different representations
is very different: the raw data has 1,161 dimensions, the expert features have 561, and the
MTL embeddings have only 128. For this reason, Figure 5.4c also looks sparsely populated, as
the t-SNE algorithm piles together many instances with similar embeddings.

An important consideration is that, while the experts who defined the features in Figure 5.4b
were well aware of the downstream problem, the MTL embeddings naturally arise from self-
supervision and are thus not only more compact, but potentially more general.

(a) 1 (126) (b) 4 (504) (c) all (7352)

Figure 5.5. t-SNE visualization of the latent embeddings learned by the supervised model
with different amounts of labeled data. The colors represent different activities using the
same color map as Figure 5.4.

For reference, we also report the t-SNE visualization of the embeddings learned by the su-
pervised model trained from scratch on different amounts of labeled data (Figure 5.5). As can
be noted, the separation between classes increases with the data availability. When all the la-
beled data is used (Figure 5.5c), the clusters are well defined and separated, as achieved by the
MTL embeddings (Figure 5.4c) that were learned without any knowledge of the downstream



43 5.3 Results

task. The gap between classes is more pronounced then in the MTL case, but we can also see
some mixing in the different walking activities that are not present in the MTL embeddings. De-
spite the availability of labels, distinguishing between Sitting and Standing is still challenging.
For smaller data regimes (Figure 5.5a and Figure 5.5b), the clusters are less defined, reflecting
the lower accuracy achieved in these scenarios as reported in Table 4.1 and Figure 4.2.

5.3.3 Different Pretraining Tasks Combinations

After analyzing the performance of the multitask SSL method using the full set of pretraining
tasks, we evaluate the impact of the individual ones. This is done by exploiting our modular
design, rerunning the same test while activating only the desired task combination.

cl
as

s
re

c
C

L
V

IC
R

eg
.

Accuracy (%)

1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) all (7352)

✓ ✗ ✗ ✗ 83.66 ± 1.70 85.95 ± 1.05 86.85 ± 0.72 87.97 ± 1.06 88.35 ± 0.78 88.14 ± 0.77 89.79 ± 1.24
✗ ✓ ✗ ✗ 86.18 ± 1.17 88.22 ± 1.86 88.44 ± 1.08 88.75 ± 1.17 89.16 ± 0.76 89.72 ± 0.98 90.02 ± 1.02
✗ ✗ ✓ ✗ 84.92 ± 2.47 89.70 ± 1.07 90.38 ± 0.59 89.77 ± 0.83 91.16 ± 1.74 91.56 ± 0.58 93.02 ± 0.85
✗ ✗ ✗ ✓ 88.99 ± 0.93 89.15 ± 1.55 89.66 ± 1.62 89.58 ± 0.78 90.15 ± 1.23 90.19 ± 0.88 89.81 ± 1.32

✓✓ ✗ ✗ 83.64 ± 1.90 87.85 ± 3.24 88.46 ± 1.73 88.27 ± 1.85 89.44 ± 1.89 88.94 ± 1.19 91.21 ± 2.02
✓ ✗ ✓ ✗ 85.95 ± 2.87 89.93 ± 1.36 90.06 ± 1.36 90.36 ± 0.59 91.73 ± 0.79 91.58 ± 1.02 93.21 ± 0.99
✓ ✗ ✗ ✓ 90.11 ± 1.36 91.03 ± 2.64 91.16 ± 1.84 90.46 ± 2.36 91.46 ± 1.85 91.17 ± 1.74 92.30 ± 1.29
✗ ✓✓ ✗ 85.21 ± 3.26 89.74 ± 2.17 90.52 ± 1.77 90.20 ± 1.21 91.70 ± 2.08 92.00 ± 1.09 93.53 ± 1.02
✗ ✓ ✗ ✓ 85.59 ± 2.17 87.82 ± 3.58 87.86 ± 3.05 88.86 ± 2.35 89.10 ± 2.25 89.39 ± 2.46 89.54 ± 1.88
✗ ✗ ✓ ✓ 89.30 ± 2.80 91.23 ± 1.62 91.59 ± 1.34 91.30 ± 0.99 92.33 ± 1.25 92.50 ± 0.95 93.18 ± 0.60

✓✓✓ ✗ 86.13 ± 2.59 89.72 ± 2.39 91.06 ± 1.35 90.95 ± 0.85 92.20 ± 1.70 92.12 ± 1.24 94.07 ± 0.97
✓ ✗ ✓ ✓ 89.69 ± 0.79 91.80 ± 1.43 91.94 ± 0.76 91.77 ± 0.94 93.00 ± 0.87 92.94 ± 0.27 94.33 ± 0.63
✓✓ ✗ ✓ 90.00 ± 1.29 91.53 ± 2.13 90.89 ± 2.02 91.19 ± 1.69 91.61 ± 1.78 91.12 ± 1.18 91.88 ± 0.96
✗ ✓✓ ✓ 89.11 ± 2.06 91.60 ± 1.57 91.54 ± 0.86 91.69 ± 0.76 92.29 ± 1.19 92.62 ± 0.48 93.33 ± 0.91

✓✓✓ ✓ 89.64 ± 2.02 91.40 ± 1.57 91.76 ± 0.83 91.97 ± 1.20 92.69 ± 1.80 93.28 ± 0.93 94.12 ± 1.14

Table 5.1. Ablation study on multitask SSL task combinations. Each row shows a different
combination of SSL tasks: classification augmentation (class), reconstruction (rec), con-
trastive learning (CL), and VICReg with features, indicated by checkmarks (✓) and cross
marks (✗). The table presents downstream classification accuracy (%) across different num-
bers of labeled training samples. Bold values indicate the best performance for each data
regime. The optimal three-task combination (class + CL + VICReg) consistently outper-
forms other combinations, while the inclusion of reconstruction often degrades performance
when combined with contrastive methods. Results are averaged over 5 folds with encoders
trained for 200 epochs.

Different from section 4.4, where each task is trained separately, we focus here on under-
standing whether the nature of the tasks and their combination can lead to different outcomes.
For example, two tasks might perform similarly when trained separately, but they might learn
different aspects of the data, and their combination might lead to a better representation. On
the other hand, two other tasks might learn similar features, and their combination might not
provide any additional information to the model. Finally, it could also be the case that two
different representations could be conflicting and cancel each other out, leading to a worse
performance.



44 5.3 Results

Table 5.1 presents the results of this ablation study, where we systematically explore the
impact of different task combinations on performance. We tested all the possible combinations
of two, three, and four tasks, the last one being the full multitask model. The analysis has
revealed several key insights into the interactions and importance of the different tasks.

The first observation is that contrasting raw data with expert features (VICReg with fea-
tures) is crucial for achieving the best performance in scarce data regimes. When this task
is excluded, in the most extreme scenario (few-shot learning with 126 labeled samples), the
performance drops significantly, losing from 3.7% to 6.4% depending on the task combination.
This result further confirms the importance of multimodal CL and exploiting expert features in
the pretraining phase. However, as more labeled data is available for downstream training, con-
trasting with expert features becomes less critical or even unnecessary, as seen in the full dataset
regime (7352 labeled samples), where the performance is comparable with and without this
task. When the number of labeled samples is high, standard CL between data augmentations
becomes the most important task, consistently leading the models to the best performance.

Moreover, removing the reconstruction task (rec) from the combination does not seem to
have a significant impact on the performance, as the three other tasks combined achieve per-
formance comparable to the full four-task combination. However, small improvements are
observed when reconstruction and standard CL are combined, suggesting that these two tasks
can complement each other in certain scenarios. This could suggest that the other two tasks
(classification augmentation and VICReg with features) capture similar information to what
reconstruction learns, making reconstruction redundant in this context.

The four-task combination (bottom row) or the three-task combination without reconstruc-
tion (fourth to last row) always achieves the best accuracy or is very close to the best performing
task combination. This finding emphasizes the importance of including diverse tasks in the pre-
training phase to capture a wide range of features and improve generalization.

5.3.4 Consequences of Overfitting during Pretraining

While in standard MTL, the performance and generalization ability of the model across different
tasks are the ultimate goal, we use it in an SSL setting only to improve the quality of the learned
representations. Therefore, only the performance on the downstream task is relevant, and we
can afford to overfit the pretraining tasks on the training data. Figure 5.6 shows the downstream
task accuracy as a function of the number of epochs used to train the multitask encoder.

It should be noted that the best performance on the downstream task is not always achieved
by the best-performing pretraining model. In this case, the best pretraining performance is
achieved after around 108.8 epochs (average of the 5 folds). However, even though the model
starts overfitting the pretraining tasks, we continue to see a slight improvement in the down-
stream task accuracy. For example, when training the encoder for 200 epochs, the downstream
task accuracy is 89.6% when only the smallest amount of labeled data is used, compared to
88.9% taking the best pretraining epoch model. Similarly, even when the full labeled data is
used, the accuracy is 94.1% compared to 93.4%. These might look like small improvements,
but they can make a significant difference in real-world applications where every percentage
point of accuracy counts.

Another interesting observation is that, even when the number of training epochs is high, a
loss in downstream performance is not observed. After around 200 epochs, the improvement
curve flattens out. A possible explanation is that the embeddings are latent representations
and far from the last task-specific layers. Therefore, the model can still overfit the last layers



45 5.3 Results

0 100 200 300 400 500 600 700 800 900 1,000
70

75

80

85

90

95

100

Best Epoch:
108.80 ± 7.91

Training Epochs

A
cc

u
ra

cy
(%

)

1 (126)

2 (252)

3 (378)

4 (504)

5 (630)

6 (756)

All (7352)

Figure 5.6. Overfitting the pretraining tasks on the UCI HAR dataset. The plot shows the
accuracy of the model as a function of the number of training epochs of the multitask en-
coder, with different colors representing different amounts of labeled data used for training.

without affecting the quality of the deep learned representations.
This behavior is not unique to multitask SSL but also occurs in single-task SSL settings.

For instance, in section 4.4, we presented the results after 200 epochs of training the encoder.
However, when taking the encoder at the epoch with the best pretraining task performance,
the downstream accuracy drops. For example, considering the standard VICReg trained with
features we observe a consistent decrease of 3-4 percentage points in accuracy across all the
labeled data sizes. Similar behavior occurs for the other SSL methods.

For this reason, all the results presented in this thesis are obtained using a fixed number of
epochs (200) for training the encoder and saving the last model. Additional research could be
done to further investigate this behavior.

5.3.5 Ablation: Different Encoders

To evaluate the robustness of the results obtained on the specific configuration of the encoder,
we perform an ablation study replacing the FCN encoder with other architectures commonly
used in time series analysis: LSTM and Transformer. The architectures of these encoders are
inspired by Qian et al. [2022], which uses them in a CL scenario to experiment with different
CL frameworks, backbone architectures, and data augmentations.

The first encoder is an implementation of a Deep Convolutional LSTM (DeepConvLSTM)
with 4 convolutional layers with ReLU activation functions, followed by a 0.5 dropout layer and
2 LSTM layers. The output of this encoder is a 128-dimensional vector. The encoder contains
roughly 0.55 million parameters, which is significantly more than the FCN encoder used in the
previous sections (see subsection 4.2.1), which has only 85K parameters.



46 5.3 Results

1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) All (7352)

60

70

80

90

Training Regimes: Labeled Samples per User per Class (Total)

A
cc

u
ra

cy
(%

)

MTL (Multi-task Learning)

CA (Classify Augmentations)

R (Reconstruction)

CL (Contrastive Learning)

VICReg (with Features)

1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) All (7352)

70

75

80

85

Training Regimes: Labeled Samples per User per Class (Total)

A
cc

u
ra

cy
(%

)

MTL (Multi-task Learning)

CA (Classify Augmentations)

R (Reconstruction)

CL (Contrastive Learning)

VICReg (with Features)

Figure 5.7. Comparison of multitask SSL with single-task SSL methods using a Deep-
ConvLSTM encoder (top) or a Transformer-based encoder (bottom). The plots show the
accuracy of the model as a function of the number of labeled samples used for downstream
training, with different colors representing different SSL methods. We report the mean and
its 90% confidence interval over 5 runs. The encoders are trained for 200 epochs.

The second encoder is based on Transformers. It first uses a linear layer to convert the input
time series into embeddings of 128. A special 128-dimensional token is added to the embedded
sequence as a representation vector. Positional encoding is added to the embedding to give the
model information about the order of the tokens. The core of the network consists of a stack of
4 identical blocks, each containing a multi-head self-attention layer and a fully connected feed-
forward layer. Residual connections are used around each layer to facilitate stable training. The
output of this encoder is also a 128-dimensional vector. The Transformer encoder has around
0.33 million parameters.



47 5.3 Results

Figure 5.7 shows the results of the ablation study using the DeepConvLSTM and Transformer
encoders, respectively. The relative performance of the multitask SSL method compared to
single-task SSL methods is consistent with the results obtained using the FCN encoder: when
combining multiple SSL tasks, the MTL model consistently outperforms the single-task SSL.

However, the absolute performance of the models trained with these encoders is lower than
that obtained with the FCN encoder. This might be due to the size of the encoders, which
are way larger than the FCN one (0.55M and 0.33M parameters for the DeepConvLSTM and
Transformer, respectively, compared to 85K for the FCN encoder). Additionally, architectures
like Transformer need a larger amount of data to generalize well, and the UCI HAR dataset is
relatively small.

The results obtained confirm at the same time the robustness of the approach when using
different encoders and that the selected FCN encoder is a good choice.

5.3.6 Ablation: Testing the Embedding Size

A crucial aspect of SSL is the size of the learned embedding. A larger embedding might capture
more information about the data, but it can also lead to overfitting, especially when the amount
of labeled data is limited. Smaller embeddings, on the other hand, compress the information,
and they force the model to focus on the most relevant features.

To investigate the impact of the embedding size on the downstream performance, we con-
ducted an ablation study where we trained the FCN encoder with different output sizes. To
keep the number of parameters constant, the output of the last convolutional block (2304) is
reshaped to the desired embedding size using pooling. Studying the impact of the embedding
size is not easy, as it heavily impacts the downstream classifier. As explained in subsection 4.2.2,
the downstream classifier consists of a fully connected layer that maps the embedding to a hid-
den size of 512, followed by ReLU activation, 0.3 dropout, and a final fully connected layer that
maps the hidden size to the number of classes (6 for the UCI HAR dataset). For a complete
comparison, one should study the best architecture for each embedding size, but this is out of
the scope of this work and would require a lot of trials and hyperparameter tuning. Therefore,
we keep the same architecture for the downstream classifier, and we only change the first layer
to match the embedding size.

Size 1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) all (7352)

128 89.64 ± 2.02 91.40 ± 1.57 91.76 ± 0.83 91.97 ± 1.20 92.69 ± 1.80 93.28 ± 0.93 94.12 ± 1.14
256 88.88 ± 1.21 91.68 ± 1.44 91.52 ± 1.48 91.44 ± 0.76 92.43 ± 0.64 92.45 ± 0.74 94.29 ± 0.63
384 87.51 ± 1.90 90.97 ± 1.86 91.31 ± 1.14 91.55 ± 0.62 91.76 ± 0.59 92.28 ± 0.62 94.40 ± 1.39
512 85.81 ± 1.70 90.40 ± 1.98 90.17 ± 2.29 90.70 ± 1.48 91.29 ± 1.48 91.49 ± 0.90 93.86 ± 1.44
640 85.78 ± 0.61 89.87 ± 1.19 91.27 ± 1.18 91.16 ± 0.51 91.58 ± 0.64 92.18 ± 0.60 94.50 ± 0.65
768 84.55 ± 0.99 89.71 ± 1.85 90.45 ± 0.89 90.84 ± 0.64 90.81 ± 0.49 90.62 ± 1.15 93.70 ± 0.94
1024 83.94 ± 2.01 89.17 ± 1.09 89.86 ± 1.50 89.94 ± 0.41 90.95 ± 0.81 90.52 ± 0.92 93.35 ± 1.32
1280 84.69 ± 0.99 89.64 ± 1.82 90.30 ± 1.46 90.68 ± 0.64 91.02 ± 0.90 91.40 ± 1.22 94.47 ± 0.99

Table 5.2. Multitask SSL with different embedding sizes. The table shows the accuracy of
the model as a function of the number of labeled samples used for downstream training,
with different embedding sizes. The FCN encoder is trained for 200 epochs. The values are
the mean and standard deviation of the accuracy over 5 runs. The best accuracy for each
number of labeled samples is highlighted in bold.



48 5.4 Closing Remarks

Table 5.2 shows the results of this ablation study, while Figure 5.8 visually compares the
results for some of the embedding sizes. The results show that increasing the embedding size
does not provide additional knowledge to the model. When the full labeled dataset is used, all
the embedding sizes achieve similar performance, with the 640-dimensional embedding slightly
registering the best performance (even though the difference is not statistically significant).
However, as the number of labeled samples decreases, the lower embedding sizes (128 and
256) start to outperform the larger ones. This suggests that smaller embeddings are more
robust to overfitting when the amount of labeled data is limited, while larger embeddings might
capture nuances in the data that are very difficult to learn without a sufficient amount of labeled
samples.

1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) All (7352)

84

86

88

90

92

94

96

Training Regimes: Labeled Samples per User per Class (Total)

A
cc

u
ra

cy
(%

)

128

256
384

640
1280

Figure 5.8. Multitask SSL with different embedding sizes. The plot shows the accuracy of
the model as a function of the number of labeled samples used for downstream training,
with different colors representing different embedding sizes. We report the mean and its
90% confidence interval over 5 runs. The FCN encoder is trained for 200 epochs.

5.4 Closing Remarks

Our extensive experimentation demonstrated that combining multiple SSL tasks in a multitask
setting can significantly improve the performance relative to the single-task solutions. In our
design, the combination is achieved through a modular architecture where adding or removing
tasks is straightforward. By evaluating different task combinations, we found that, especially
in the low-labeled data regime, it is important to include in the combination tasks with differ-
ent characteristics and incorporate, if possible, expert knowledge in engineered features. Our
experiments show that in scarce data regimes, the VICReg with features task is crucial, since
the performance drops significantly in few-shot learning settings when it is removed from the
combination. As labeled data increases, its importance diminishes, and standard CL between
augmentations becomes the dominant contributor to performance. When the reconstruction
task is removed from the 4-task combination, the performance drop is negligible, suggesting



49 5.4 Closing Remarks

that it captures similar information to the other tasks. Overall, the best or near-best results
consistently come from either the full four-task combination or the three-task variant without
reconstruction, highlighting the value of diverse pretraining tasks for capturing varied features
and enhancing generalization. Another interesting finding is that it is not obvious when to stop
pretraining the encoder. This is because the target of pretraining is not to achieve the best per-
formance on pretraining tasks, but to generate embeddings useful for downstream classification
that uses labeled data unknown at the moment of pretraining. This might suggest that it could
be useful to exploit labeled samples to define stopping criteria for the pretraining phase. Our
ablation studies have also demonstrated the robustness of the approach to changes in encoder
architecture and embedding size. In particular, we found that smaller embeddings are more
robust to overfitting when the amount of labeled data is limited. In the next chapter, we will
see how to further improve performance by improving the training of the downstream classifier.



50 5.4 Closing Remarks



Chapter 6

Improving Accuracy

To exploit the full potential of unlabeled data, semi-supervised methods can
be combined with our multitask SSL approach. We previously trained en-
coders on different pretraining tasks and then used them to train a classifier
on small datasets of labeled data. In this chapter, we explore how to improve
the accuracy of the classifier even further by leveraging the unlabeled data,
also when training the downstream classifier.

6.1 Introduction

The training paradigm used until now is a two-stage process: first, pretrain an encoder on large
amounts of unlabeled data using various SSL techniques, and secondly, freeze the encoder and
train a classifier on top of the embeddings produced by the encoder using a small dataset of
labeled examples. While this approach successfully builds a strong knowledge base from the
unlabeled data, it discards the vast amount of information contained in the unlabeled data dur-
ing the final supervised classification stage. This is particularly problematic when the number
of labeled examples is very low.

This chapter investigates how to combine multitask SSL with the strengths of semi-supervised
learning. The main idea is to leverage the large set of unlabeled data not only during the pre-
training phase but also during the final classifier training phase itself. Given the relatively
high performance of the multitask SSL approach, among the many possible solutions (see sub-
section 2.3.2), we have selected pseudo-labeling since it can exploit the strong generalization
capabilities of the encoder that drives the classification task.

6.2 Pseudo-Labeling

Pseudo-labeling is a simple yet powerful technique for leveraging unlabeled data in a semi-
supervised learning framework. The main idea is to use the model’s predictions on the unlabeled
data as "pseudo-labels" and incorporate them into the training process. This assumes that the
model’s high-confidence predictions on the unlabeled data are likely to be correct and can be
used as useful training signals. The error induced by wrong predictions will be surpassed by
the benefits of incorporating the more abundant correct ones.

51



52 6.3 Results

In our implementation, we first train a classifier on the labeled data, then use this classi-
fier to predict labels for the unlabeled data. These pseudo-labels of samples where predictions
are confident (above a class probability of 0.35) are then used to augment the training set,
and the classifier is finetuned on this increased dataset. The samples with very low confidence
predictions are discarded, as they are likely to be noisy and not representative of the true distri-
bution. This process is repeated iteratively for a maximum of 50 epochs. The best epoch model
is selected based on the validation accuracy.

6.3 Results

For this experiment, we test the effectiveness of pseudo-labeling on classifiers using two differ-
ent embedding sizes: 128 and 384. The results are presented in Table 6.1. The table shows
the accuracy of the classifier trained on the labeled data only, and the accuracy after applying
pseudo-labeling finetuning. As can be seen, pseudo-labeling is particularly effective when the
number of labeled examples is small, leading to +3.02% and +0.85% improvement in accuracy
for the 128 and 384 embedding sizes, respectively. The improvement is less pronounced when
the number of labeled examples is larger, but still significant for the bigger embedding size. It
should be noted that finetuning using pseudo-labels should only improve performance, since
we select the best model every epoch. However, the model is selected using validation data,
which is very scarce, and an improvement in the validation accuracy is not always matched
with an improvement in the accuracy on the way larger test set. This explains why there are
some negative improvements in the table.

Size Method 1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756)

128
Base model 89.62 ± 2.16 92.26 ± 2.15 91.41 ± 0.55 91.82 ± 1.08 92.93 ± 0.80 93.15 ± 0.66

Pseudo-labels 90.47 ± 1.73 92.36 ± 1.23 91.24 ± 0.80 92.47 ± 1.44 92.62 ± 1.48 92.60 ± 0.90

Improvement +0.85 +0.10 -0.17 +0.65 -0.31 -0.55

384
Base model 86.72 ± 2.40 91.31 ± 1.59 91.80 ± 1.00 91.65 ± 0.53 92.20 ± 1.13 92.72 ± 0.46

Pseudo-labels 89.74 ± 2.62 92.47 ± 1.94 92.32 ± 1.31 92.01 ± 0.59 93.06 ± 1.15 93.16 ± 1.23

Improvement +3.02 +1.16 +0.52 +0.36 +0.86 +0.44

Table 6.1. Effect of pseudo-labeling on the accuracy of the model with different embedding
sizes. The results are reported as mean ± standard deviation over 5 runs. The numbers in
parentheses indicate the number of labeled samples used for each task.

6.4 Closing Remarks

This chapter presents a simple refinement of the multitask SSL approach. Our preliminary re-
sults show that incorporating confident pseudo-labels is beneficial at low labeled data regimes.
An interesting finding is that the more pronounced improvements are for larger embedding
sizes. This could indicate that this technique could be employed for more complex data than
what is available in the UCI HAR dataset.



Chapter 7

Multitask Pretraining in a Federated
Learning Setting

Previous chapters introduced a multitask self-supervised learning approach
to learn powerful representations from unlabeled data, and experimentally
demonstrated its effectiveness to improve the performance of downstream
tasks. In this chapter, we extend this analysis to federated learning, which
is often necessary to protect the privacy of users’ data.

7.1 Introduction

This thesis introduced methods to fully exploit the potential of unlabeled data and train models
that generalize well even with very few labeled examples. This is very useful in many real-world
scenarios, where labeled data availability is difficult to collect. All the experiments conducted so
far demonstrated the effectiveness of multitask pretraining as a way to leverage large amounts
of unlabeled data to learn robust representations to be used in downstream tasks. However,
all the experiments were conducted in a centralized setting, where all the data is available in a
single location. This is not always possible, especially when dealing with sensitive data.

HAR is a classical example, where the difficulty of labeling data and privacy concerns meet.
For this reason, many of the available datasets are small and tied to individual devices. Col-
lecting large amounts of unlabeled data could be achieved by crowdsourcing, without asking
the user to do anything except to carry the sensors. For instance, in the context of a large
medical population study, the UK Biobank [Sudlow et al., 2015; Doherty et al., 2017] collected
a wide variety of personal information from over 500,000 participants. A subset of 100,000
participants was involved in a study that collected accelerometer data.

It has been demonstrated that using such huge amounts of unlabeled data can significantly
improve the quality of the generalizability and accuracy of pretrained models for HAR [Yuan
et al., 2024]. However, this was done by collecting all the user data in a centralized location
and performing training on the full data. Even though the participants voluntarily joined the
experiment, and agreed to share their anonymized data, they gave broad consent to use it for
any health-related research [Sudlow et al., 2015], so privacy concerns may still arise.

In this chapter, we evaluate the feasibility of pretraining the multitask SSL model introduced
in the previous chapters in a FL setting, where the data is not collected in a centralized location,

53



54 7.2 Federated Learning Setting

but rather remains on the users’ devices.

7.2 Federated Learning Setting

In the experiments presented in this chapter, we use the standard Federated Averaging (FedAvg)
[McMahan et al., 2017] algorithm, which is the most widely used method for FL.

The training process is as follows: the server initializes a global model and sends it to
all clients. Each client then trains the model on its local data for a few epochs (two in our
experiments), and sends the updated model back to the server. The server then averages the
models received from the clients to obtain a new global model, which is sent back to the clients
for the next round of training. This process continues until convergence or until a predefined
number of rounds is reached.

The implementation used in this thesis is the one provided by the Flower framework [Beutel
et al., 2022], which is a flexible FL framework. Similar to the centralized setting, we use Adam
as the optimizer, and the same hyperparameters as in the previous chapters.

Since the training and validation split used for centralized training was based on user IDs
(see section 3.3), we use the same split for the FL setting and associate a different client to each
user. This readily simulates a realistic situation, in which each participant never shares their
data with other clients or the server, ideally performing training on the wearable device itself.

7.3 Results

1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) All (7352)
80

85

90

95

Training Regimes: Labeled Samples per User per Class (Total)

A
cc

u
ra

cy
(%

)

MTL Centralized

MTL 200 rounds

MTL 300 rounds

MTL 400 rounds

MTL 500 rounds

MTL 600 rounds

MTL 700 rounds

MTL 800 rounds

Figure 7.1. Downstream accuracy of MTL SSL in a federated setting. The x-axis represents
the number of training labels, while the y-axis shows the accuracy achieved. We report
the mean and its 90% confidence interval over 5 runs. All models are trained with 2 local
epochs and the indicated number of rounds. The dashed line is the MTL SSL model in a
centralized setting, trained with 200 epochs.



55 7.3 Results

Figure 7.1 provides a direct comparison between federated and centralized training ap-
proaches. It compares the performance of the multitask SSL federated models after different
pretraining rounds with the performance of the multitask SSL model trained in a centralized
setting with 200 pretraining epochs. Table 7.1 summarizes the accuracy results across different
communication rounds and labeled data regimes. For each number of rounds, ranging from
100 to 800, we report the results for different labeled data regimes, from one to six labeled
examples per activity per user. The reported results are the average accuracy and standard de-
viation across 5 folds. With sufficient communication rounds (500+), the federated approach
nearly matches the performance of centralized training (red dashed line in Figure 7.1) across
most labeled data regimes. The largest performance gap between federated and centralized
approaches, only around 1.6%, occurs in the lowest labeled data regime (126 samples).

Round 1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) All (7352)

100 77.90 ± 4.22 83.02 ± 3.75 84.23 ± 2.44 84.98 ± 2.62 85.65 ± 2.66 85.73 ± 3.32 88.56 ± 0.96
200 84.53 ± 3.56 87.72 ± 2.31 87.61 ± 2.23 88.00 ± 1.43 88.63 ± 1.97 89.52 ± 0.78 91.16 ± 0.76
300 86.55 ± 3.25 89.47 ± 0.49 90.00 ± 1.37 89.67 ± 1.37 90.69 ± 1.12 91.14 ± 1.03 92.18 ± 0.55
400 87.06 ± 2.63 90.23 ± 0.46 90.38 ± 1.18 90.34 ± 0.60 91.29 ± 1.10 91.50 ± 1.13 92.94 ± 0.79
500 87.66 ± 2.38 90.89 ± 0.96 91.23 ± 1.22 90.84 ± 0.43 91.96 ± 1.18 91.59 ± 1.06 93.40 ± 0.79
600 87.88 ± 2.50 90.82 ± 0.90 91.26 ± 0.90 91.25 ± 0.55 91.56 ± 0.84 91.91 ± 0.86 93.06 ± 1.19
700 88.03 ± 1.98 91.16 ± 0.94 91.11 ± 1.30 90.84 ± 0.42 91.58 ± 0.70 91.94 ± 0.80 93.05 ± 1.11
800 88.00 ± 1.89 91.49 ± 0.84 91.31 ± 1.03 90.76 ± 0.81 91.38 ± 0.90 91.82 ±0.82 92.70 ± 0.89

Table 7.1. Downstream accuracy results for different numbers of training labels and different
pretraining rounds in a federated learning setting. The numbers in parentheses indicate
the total number of training examples used for each method. The best performing method
for each number of training labels is highlighted in bold.

100 200 300 400 500 600 700 800
75

80

85

90

95

Training Rounds

A
cc

u
ra

cy
(%

)

1 (126)

2 (252)

3 (378)

4 (504)

5 (630)

6 (756)

All (7352)

Figure 7.2. Downstream accuracy of MTL SSL in a federated setting with different numbers
of training labels and pretraining rounds. The x-axis represents the number of training
rounds, while the y-axis shows the accuracy achieved. The different lines represent different
numbers of downstream labeled examples used for training.



56 7.3 Results

This is an important finding, as our setup performs federated training under particularly
challenging conditions, given the limited data available in the UCI HAR dataset. First of all,
each client has a very small amount of data, down to only around 300 samples per client. Based
on this little data, each client has to extract multitask information through the optimization of
a complex loss function. In addition, each client is person-specific, meaning that, even if all
clients participated in all activities, the data gathered by each client may significantly differ due
to different movement patterns, placement of the sensors, and other factors. This could increase
the complexity of the aggregation performed by the server, which could receive conflicting
updates. These conflicts might also not be only task-specific, where some particular task (e.g.,
contrastive) might be easier for a client and difficult for another, leading to problems in the
dynamic weighting of the tasks. These results suggest that, although some of the previously
mentioned issues may still exist, they do not have a major impact on overall performance.
Still, it would be interesting to explore whether techniques developed in FL for skewed data
distributions (see subsection 2.4.2) could be applied to further improve performance and fully
close the gap with centralized training.

The increased complexity of the FL setting is also apparent in the need for more optimization
steps relative to the centralized scenario to reach the optimum. Figure 7.2 provides a visual
representation of downstream accuracy achieved as a function of the number of pretraining
federated rounds and the number of downstream labeled examples. Downstream performance
improves significantly up to 500 rounds (of two local epochs each), and then plateaus. This
behavior is similar to what was observed in the centralized setting (see subsection 5.3.4), which,
however, required 200 epochs to plateau.

1 (126) 2 (252) 3 (378) 4 (504) 5 (630) 6 (756) All (7352)
75

80

85

90

95

Training Regimes: Labeled Samples per User per Class (Total)

A
cc

u
ra

cy
(%

)

Fed-MTL

Fed-CA (Classify Augmentations)

Fed-R (Reconstruction)

Fed-CL (Contrastive Learning)

Fed-VICReg (with features)

Figure 7.3. Downstream accuracy of federated single-task and multitask SSL models.
The x-axis represents the number of training labels, while the y-axis shows the accuracy
achieved. We report the mean and its 90% confidence interval over 5 runs. The models are
trained with 2 local epochs and 500 pretraining rounds.

Figure 7.3 compares the downstream accuracy achieved by the federated multitask SSL
model with that of federated single-task SSL models. Despite the added complexity of multi-
tasking, the MTL model surpasses the performance of the simpler models in all labeled data



57 7.4 Closing Remarks

regimes. The performance gap is lower than in the centralized setting due to the mentioned
difficulty of optimizing and aggregating local models with personalized data.

7.4 Closing Remarks

The overall results suggest that the multitask SSL model can effectively leverage unlabeled data
in a federated setting, achieving performance comparable to centralized training with sufficient
communication rounds. This demonstrates the practical applicability of multitask SSL in real-
world scenarios where protecting user privacy is crucial.

The experiments have concentrated on the pretraining phase for the most challenging mul-
titask SSL model. It could be readily combined with standard FL techniques for the downstream
phase to obtain a fully federated approach. The techniques that should be employed for down-
stream federated training are the classic ones used in FL, as the downstream task is a standard
supervised classification problem. The training with few labels will be facilitated since it will
not train the entire network, but only a small classifier. Moreover, and most importantly, the en-
coder will already likely separate the classes well and filter out client-specific noise. Moreover,
the embedding created during pretraining could be used to train personalized models without
any need for collaboration.

A recent work [Yuan et al., 2024] has clearly shown that the quality of the embeddings
created during SSL pretraining significantly improves with the size and diversity of the data.
They compared the downstream performance of models pretrained on data sizes ranging from
36K to 6B samples and from 55 to around 100K users. For comparison, the UCI HAR dataset
used in this thesis contains only around 10K samples from 30 users. The demonstration that FL
can be applied in this context indicates very promising paths for creating massive amounts of
training data without any privacy concerns. Using a federated approach individual users can be
enrolled into the pretraining phase without them releasing any personal data. This can solve
one of the major problems of large centralized settings. Yuan et al. [2024] also mentions that
even the huge 6B samples dataset they used is limited, as it collects only data from a specific
region (UK) and specific demographics (adults). They suggest strong interest in training on
worldwide unlabeled data, covering larger demographics. FL could offer a viable solution to
this problem, either in cross-silo or cross-device settings.



58 7.4 Closing Remarks



Chapter 8

Generalization to Other Domains

The methods proposed in this thesis are designed to be general and appli-
cable to various domains beyond HAR. To illustrate this, we present a case
study on a different domain, specifically image recognition, one of the most
prominent fields in computer vision.

8.1 Introduction

While the primary focus of this thesis has been on HAR, the methods proposed are designed
to be general and applicable to different tasks and domains. To study the application of the
proposed methods in a different setting, we selected image recognition as a case study, since it is
a fundamental computer vision problem that can benefit from solutions that exploit large masses
of unlabeled data. Due to the widespread use of digital photography and the common practice
of sharing images online, photos of almost any object can be rapidly acquired or downloaded
from the Internet. Manually labeling such data can obviously be done only at a small scale,
and thus SSL can be a powerful tool to leverage the abundance of unlabeled data to boost
performance [Schmarje et al., 2021].

In the following, we will first describe the chosen dataset among the many available for
image recognition, then we will introduce the architecture and the pretraining tasks that we
chose to employ in the experiments. Finally, we will discuss the obtained results, comparing the
performance of the proposed multitask SSL approach with single-task SSL methods and fully
supervised baselines.

8.2 Data

The field of image recognition has a long history, and many datasets have been proposed to
benchmark the performance of different methods. For instance, the ImageNet dataset [Deng
et al., 2009] contains over one million labeled images of objects with their bounding boxes.
Other popular datasets, most specifically designed for object recognition, include CIFAR-10
[Krizhevsky, 2009], which consists of 60,000 images of 10 different classes, and CIFAR-100
[Krizhevsky, 2009], which collects 60,000 images of 100 different classes.

For our experiments, we selected the STL-10 dataset [Coates et al., 2011], which was cre-
ated from a subset of the larger ImageNet dataset specifically designed for benchmarking SSL

59



60 8.3 Architecture

solutions. STL-10 contains RGB images of size 96x96 pixels, labeled with 10 classes: airplane,
bird, car, cat, deer, dog, horse, monkey, ship, and truck (see Figure 8.1).

PLANE BIRD CAR CAT DEER DOG HORSE MONKEY SHIP TRUCK

Figure 8.1. Sample labeled images from the STL-10 dataset. The labeled and test dataset
contains 10 classes of objects. The unlabeled dataset contains a broader set of object
classes, including other types of animals and vehicles. Each class has multiple images.

As mentioned, the dataset is designed for SSL, and thus it contains a large amount of un-
labeled data. In particular, it provides 100,000 unlabeled images from a broader set of objects
than the labeled set, for instance, it contains other types of animals (bears, rabbits, etc.) and
vehicles (trains, buses, etc.). For downstream supervised training, the dataset provides 500
labeled training images and 800 test images per class. In this work, we use the full set of
unlabeled images for pretraining, and we test different labeled data regimes for downstream
training, from 100 to 500 labeled images per class. Downstream training is performed at each
regime on 80% of the available labeled images for training, leaving the remaining 20% for val-
idation. The test set is always kept separate and used only for final evaluation. For processing,
the original image channels’ range of [0, 255] is remapped to [−1, 1].

8.3 Architecture

To facilitate the comparison of different pretraining methods, we will keep the same encoder
and downstream classifier architecture for all the experiments, and use them as components
for the task-specific models.

8.3.1 Encoder

We use ResNet-18 as our encoder [He et al., 2016]. It is a widely used architecture for many
recognition tasks. The initial image (96×96×3) is passed through a 7×7 convolutional layer,
followed by a max pooling layer, and then through four groups of residual blocks to arrive. After
the last group, a global average pooling layer is applied to obtain a 512-dimensional feature
vector.

Residual blocks are the key component of the ResNet architecture, as they allow the model
to grow deeper without suffering from vanishing gradients. Each residual block consists of two



61 8.4 Selected Pretrain Tasks

3 × 3 successive 3 × 3 convolutional layers, each followed by batch normalization and ReLU
activation. The input passes through this sequence to produce an output, which is then added
to the original input via an identity skip connection. This allows the model to learn residual
mappings, which are easier to optimize than the original unreferenced mappings.

Typically, the ResNet-18 ends with a fully connected layer that outputs the class probabilities,
but in our case, we will remove this layer to implement task-specific architectures.

8.3.2 Downstream Classifier

For the downstream classifier, instead of designing a multilayer classifier as for the HAR use case
(see subsection 4.2.2), we will use a single fully connected layer that takes the 512-dimensional
feature vector from the encoder and maps it to the number of classes.

This is the same as in the original ResNet-18 architecture, with the difference that the final
fully connected layer is trained separately during downstream optimization, keeping all the
other layers frozen.

8.4 Selected Pretrain Tasks

Similarly to the HAR case, we selected CL and two pretext tasks for the pretraining phase.

8.4.1 Contrastive Learning

Given the success of CL in the HAR domain, we used the standard SimCLR [Chen et al., 2020]
approach. For image processing, the model consists of the ResNet-18 encoder, followed by a
projection head that maps the 512-dimensional feature vector to a lower-dimensional space.
The projection head consists of two fully connected layers with ReLU activation in between,
and a final layer that outputs the 128-dimensional representation.

(a) Augmentation 1. (b) Augmentation 2.

Figure 8.2. Contrastive learning pretraining task. The model learns to maximize the
similarity between two augmented views of the same image. The figure shows an example
of two augmented views of the same image.

At training time, the model contrasts two augmented views of the same input image (see
Figure 8.2), learning to maximize the similarity between the two representations while mini-
mizing the similarity with representations of other images in the same batch. The batch size is
set to 512, much larger than the 64 used in the HAR case, to allow for more negative samples
and thus better CL. This was made possible by the larger number of unlabeled images available



62 8.4 Selected Pretrain Tasks

in the STL-10 dataset with respect to the small size of the UCI HAR dataset. The augmenta-
tion pipeline consists of multiple transformations: random horizontal flip, random rotation,
random masking of a rectangular region, random crop and resize to the original size, random
color jittering, random grayscale conversion, and random Gaussian blur. These augmentations
are common in the literature [Pathak et al., 2016; Gidaris et al., 2018; Chen et al., 2020].

The augmentations are not applied in isolation, but composed together to create a more
diverse set of views. They are computed by the training data loader, letting the model see
different views of the same image at each training epoch. Similarly to the HAR implementation,
the contrastive loss is computed using the NT-Xent loss (see Equation 2.2).

8.4.2 Pretext Tasks

In addition to CL, we selected two pretext tasks with the purpose of evaluating whether they
can provide additional information when combined with CL in a multitask setting.

Masked Autoencoder

The first pretext task is a masked autoencoder that reconstructs the original image from a
masked version of it. In the implemented version, the mask is a randomly sized and positioned
rectangular region that replaces the image pixels with a uniform gray value (see Figure 8.3).

(a) Augmented. (b) Masked. (c) Reconstructed.

Figure 8.3. Masked autoencoder pretext task. The model learns to reconstruct the original
image from a masked version of it. Before the masking, the original image is augmented to
increase diversity. The figure shows an example of the original image, the masked version,
and the reconstructed image.

Masked autoencoders have been widely used for SSL in the literature, and many specialized
architectures have been proposed [Zhang et al., 2023a]. In this work, we use a direct imple-
mentation that composes the ResNet-18 encoder with a decoder mapping the 512-dimensional
feature vector back to the original image size. The decoder consists of 4 up-convolutional blocks
(each composed of a convolutional layer, batch normalization, and ReLU activation), followed
by a final convolutional layer that outputs the original image size (96 × 96 × 3) and a tanh
activation to ensure the output values are in the range [−1,1] as the input images. The loss
used is a standard mean squared error (MSE) loss, computed between the original image and
the reconstructed image. To further improve generalization, the input images are augmented
before being masked. The augmentation pipeline consists of random horizontal flip, random
crop and resize, random color jittering, random grayscale conversion, and random Gaussian
blur.



63 8.4 Selected Pretrain Tasks

The selected architecture performs reconstruction without any modification to the ResNet-
18 encoder, which is not specifically designed for this task. Specific techniques, such as masked
convolutions [Gao et al., 2022], and different architectures have been proposed in the literature
to improve masked reconstruction performance [Zhang et al., 2023a]. However, we decided to
keep the same encoder architecture for all tasks to facilitate comparison and focus on evaluating
multitask performance rather than optimizing individual tasks.

Rotation Prediction

The second pretext task is rotation prediction, where the model learns to predict the rotation
angle applied to the input image. This task might seem trivial, but it has been shown to be
effective for unsupervised representation learning [Gidaris et al., 2018] and as a regularizer for
CL [Kinakh et al., 2021; Addepalli et al., 2022].

During training, the input images are randomly rotated by 0◦, 90◦, 180◦, or 270◦, and the
model must predict the correct angle (see Figure 8.4).

(a) 0 degrees. (b) 90 degrees. (c) 180 degrees. (d) 270 degrees.

Figure 8.4. Rotation prediction pretext task. The model learns to predict the rotation
angle applied to an unseen input image. The images are shown with the predicted angle
(0, 90, 180, or 270 degrees). The model predicts the correct angle with 100% confidence.

The model consists of the ResNet-18 encoder followed by two fully connected layers with
ReLU activation in between. The first layer maps the 512-dimensional feature vector to a 256-
dimensional vector, and the second layer outputs a 4-dimensional vector representing the prob-
abilities of each rotation angle (softmax activation). The loss used is a standard cross-entropy
loss, computed between the predicted probabilities and the true rotation angle label. To in-
crease input diversity, the input images are augmented with a random horizontal flip.

8.4.3 Multitask SSL Model

The multitask SSL model is implemented as described in section 5.2. For the evaluation on
images, we do not test all the possible task combinations, but only the combination of CL with
one of the pretext tasks.

Similarly to the HAR case, the ResNet encoder is shared, and we use dynamic task weight-
ing to combine the losses of the different tasks. Since the main task is CL, and the other task
is intended as providing additional information, we scale the weight of the secondary pretrain
task by a factor λ (set to 0.3 in the experiments), while keeping the dynamic weights adapta-
tion during training. Reducing the contribution of the secondary task with a scale factor was
also performed by Kinakh et al. [2021] and Addepalli et al. [2022] that, however, did not use



64 8.5 Results

dynamic weighting. Kinakh et al. [2021] found that static scaling was harmful and manually
defined a schedule, forcing a zero weight for the first training epochs and 0.3 afterwards. By
contrast, our method is fully automatic.

8.5 Results

Table 8.1 summarizes the results obtained by the individual pretraining methods and the two
multitask combinations, also comparing them to the full supervised baseline. The results are
reported in terms of downstream test accuracy. Due to limitations in the available compu-
tational resources, we do not perform k-fold cross-validation, but we report the results of a
single run. Additionally, the encoders are pretrained on the full unlabeled dataset for just 450
epochs. Other works typically train for 1000 epochs or more [Kinakh et al., 2021]. By mea-
suring the downstream accuracy using previous checkpoints, we found that the performance
was still slowly increasing at the end of the pretraining phase, and thus, our reported results
might be underestimated. We, however, do not expect any qualitative difference in the results,
especially concerning the relative performance of the different methods.

Method 100 (80 + 20) 250 (200 + 50) 500 (400 + 100)

Supervised (no pretrain) 46.92 58.48 66.59

Masked Autoencoder (MAE) 42.60 46.96 49.79
Rotation Prediction (RP) 52.50 56.19 59.41
Contrastive Learning (CL) 73.65 76.65 78.51

MTL: CL + MAE 74.01 76.75 77.91
MTL: CL + RP 74.59 78.22 80.17

Table 8.1. Downstream test accuracy of the supervised training and of the different pre-
training methods on the STL-10 dataset. The supervised baseline trains the model from
scratch using the available labeled data at the different regimes. All the other models are
pretrained on the full unlabeled dataset, and then downstream training is performed on
the labeled data. The table shows the accuracy for different labeled data regimes: 100,
250, and 500 labeled images per class. For each regime, 80% of the labeled data is used for
training and 20% for validation. The best results are highlighted in bold.

The supervised baseline is reported here only for reference. The network was trained from
scratch on the available labeled data at the different regimes. To increase diversity, the input
images were augmented with random horizontal flip and random crop and resize. The results
show that the supervised model is not able to learn effectively at the reported labeled data
regimes and it is significantly outperformed by our MTL approach.

Before discussing the multitask results, it is interesting to analyze the performance of the
individual pretraining tasks. The first important consideration is that there is a very significant
difference in the performance of the individual tasks, with CL consistently outperforming the
other two pretrain objectives. Between the two pretext tasks, rotation prediction performs bet-
ter than masked autoencoder, but still with a modest downstream performance. This gap can
be explained by the fact that CL is presented with a large variety of augmentations and has a
loss that explicitly drives the shape of the learned representations. The other two tasks only
implicitly shape the representation space by solving a single problem. Their low performance



65 8.5 Results

indicates that the knowledge learned by solving these problems is less general and not directly
transferable to the downstream classification task. This effect is evident in the t-SNE visual-
ization of the embeddings obtained by rotation prediction (Figure 8.5a) and CL (Figure 8.5b),
where the separation of classes emerges only for the latter.

The situation, however, changes when we consider the multitask combinations. Combining
CL with MAE does not lead to a significant improvement. On the other hand, RP provides a
large performance boost across the different labeled data regimes (+0.94 percentage points
when using only 100 labeled images, +1.57 with 250, and +1.66 with 500). The achieved
results are not far from the reported ones on the STL-10 dataset (see Figure 1 in Kinakh et al.
[2021]).

Reconstructing the original image from a masked version of it, in addition to underper-
forming as a single-task pretrainer, seems to be redundant when combined with CL. It should
be noted that masking is one of the augmentations used to compute contrastive views, so CL
might already have acquired knowledge on reconstruction.

Rotation prediction also has a low performance when used alone, but it definitely provides
additional knowledge when used in combination with CL. The effectiveness of rotation predic-
tion when used in combination with CL is consistent with the findings of Kinakh et al. [2021]
and Addepalli et al. [2022]. Addepalli et al. [2022] highlights that the CL task is noisy be-
cause different augmentations may lead to low similarity between the two generated views of
the same image (that should count as positive examples), while at the same time the batch
may contain many images of similar content (that should count as negative pairs), especially
when the number of classes is much smaller than the batch size (in our case, 10 classes vs. 512
batch size). The rotation prediction task, instead, is totally unambiguous, leading to a much
smoother objective. The combination thus adds knowledge but also simplifies the optimization
landscape, leading to better performance.

(a) Rotation (RP) (b) Contrastive (CL) (c) MTL: CL + RP

Class
airplane
bird
car
cat
deer
dog
horse
monkey
ship
truck

Figure 8.5. t-SNE visualization of the learned representations for the STL-10 dataset. The
plotted samples are unseen during pretraining. The first two figures show the representa-
tions learned by the individual pretraining tasks: rotation prediction (RP) and contrastive
learning (CL). The third figure shows the representations learned by the multitask model
combining CL and RP. The colors represent the different classes in the dataset. The t-
SNE embeddings are computed on the 512-dimensional feature vectors obtained from the
ResNet-18 encoder.

The embedding structures generated from CL (Figure 8.5b) and multitask CL + RP (Fig-
ure 8.5c) show a reasonably clear clustering. It is interesting to note that the vehicles (planes,



66 8.6 Closing Remarks

cars, ships, trucks) are close together, and each individual class is well separated. Moreover,
the airplane cluster is close to the bird cluster. The other classes are more mixed, even though
a differentiation is still visible (e.g., deer and horse are close together and far from birds). The
difference between the simple contrastive and the multitask model is not visually very evident
in the t-SNE 2D projection, even though the performance of the latter is better.

8.6 Closing Remarks

This chapter illustrated the generality of the proposed methods, showing a preliminary evalua-
tion in a different domain than HAR, which has been used as the motivating example throughout
the thesis.

The chosen example was image recognition, and the study focused on combining a strong
CL method with complementary pretext tasks. Different from the HAR case, the pretext tasks
were not designed for high performance when used alone. The study has shown that combining
CL with a complementary and smoother task (rotation prediction) leads to improvements in the
downstream performance, using the same techniques discussed in the rest of the thesis.



Chapter 9

Conclusions

As this thesis reaches its conclusion, we summarize in this chapter the main
contributions of our work, discuss its limitations, and outline potential di-
rections for future research.

9.1 Summary of Findings and Contributions

The thesis explored the combination of self-supervised learning (SSL) and multitask learning
(MTL), taking Human Activity Recognition (HAR) as a case study. The main contributions can
be summarized as follows:

• We conducted an analysis of the background and current state-of-the-art in HAR, strate-
gies for learning with limited labeled data (including self-supervised and semi-supervised
learning), MTL, and federated learning (FL). This analysis identified, in the combina-
tion of SSL and MTL, an interesting direction to explore to create robust encoders from
unlabeled and possibly federated data.

• We defined a common framework and evaluation protocol for implementing and compar-
ing different SSL methods and selected HAR as a benchmark domain.

• We identified promising pretraining objectives for SSL (including contrastive approaches
and pretext tasks) and evaluated their effectiveness on downstream performance, demon-
strating how they heavily improve performance with respect to fully supervised baselines
in low-labeled-data regimes. An important finding is that multimodal contrastive learn-
ing (CL) between raw sensor data and handcrafted features is a very effective pretraining
strategy in scarce labeled data scenarios, but as more labeled data becomes available, the
additional advantage of features fades away.

• We proposed a modular multitask SSL model that combines multiple pretraining tasks
using dynamic task weighting to create robust representations and evaluated it, show-
ing increased performance with respect to single-task baselines across all tested labeled
data regimes. In particular, we showed that dynamic task weighting effectively balances
competing pretraining objectives, enabling the combination of tasks with very different
loss scales. An extensive ablation study showed that the multitask approach is robust to
different design choices, including the number and choice of tasks, the choice of encoder
architecture, and latent dimension size.

67



68 9.2 Limitations and Future Work

• We explored how to exploit a pseudo-labeling strategy to leverage unlabeled data during
downstream classifier training, and showed that it can further improve accuracy, espe-
cially in very low labeled-data regimes.

• We assessed the feasibility of applying the multitask SSL approach in a FL setting, preserv-
ing data privacy while maintaining model performance. Despite the added complexity of
multitasking, we showed that the proposed approach still surpasses the performance of
single-task baselines, even though the gap is smaller than in the centralized setting due
to the difficulty of optimizing and aggregating very different local models.

• We showed that the methods are not specific to the HAR use case, but can be adapted
to other domains. In particular, we showed how to combine CL with an auxiliary pretext
task in the image recognition domain to improve performance.

9.2 Limitations and Future Work

The methods proposed in this thesis have shown promising results, but there are still several
limitations and areas for future testing and research.

First of all, for practical reasons, all the experiments were mostly conducted on a single,
relatively small-scale dataset (UCI HAR [Anguita et al., 2013]). The dataset, widely used in the
literature, was very adapted to the task, and also challenging given the small amount of data
available. We also performed a preliminary evaluation for image recognition using the STL-
10 dataset [Coates et al., 2011], which is also widely used as a standard benchmark for SSL
methods. Performing tests on datasets with different characteristics and eventually performing
transfer learning between datasets would strengthen the results and show the generalization of
the proposed methods. Moreover, as noted by Yuan et al. [2024], the quality of the embeddings
significantly depends on the diversity and size of the unlabeled pretraining data. Thus, scaling
to datasets of orders of magnitude larger could lead to very large improvements in performance.
Given the tested feasibility of applying the proposed multitask approach in a FL setting, future
work could focus on testing the methods on massive distributed datasets, tackling at the same
time scaling and privacy issues.

Additionally, this work has mainly concentrated on evaluating all the models in the HAR
context and has performed a limited evaluation in the image recognition domain. Verifying the
effectiveness of the proposed methods in other domains would be valuable. This could also
include modifying the network architecture to fit the specific characteristics of the data and
eventually apply it to other tasks, while keeping the overall structure of the proposed multitask
approach.

Furthermore, the goal of this thesis was not to optimize and tune the individual models,
but rather to evaluate alternatives and provide a fair comparison of the different approaches.
Nonetheless, the achieved performance on downstream tasks is not very far from the fully super-
vised state-of-the-art approaches in the HAR use case [Bozkurt, 2021]. Future work could focus
on tuning the models, selecting other pretrain tasks, loss terms, and various hyperparameters
to verify the real limits of our approach in various labeled data regimes.

Our ablation studies have shown that the different tasks do not contribute equally to the
final downstream performance. An interesting direction for future work would be to refine the
analysis to identify the cross-task relationships and the interactions between them that could
be as differently specified as CL and classifying augmentations.



69 9.2 Limitations and Future Work

The proposed dynamic task weighting strategy successfully achieved the goal of combining
multiple pretraining tasks, but more sophisticated approaches could be explored (see subsec-
tion 2.3.4). In particular, gradient-based methods, such as PCGrad [Yu et al., 2020], could
blend well with the current implementation.

Finally, the current federated implementation has concentrated on the pretraining phase
and should be extended to the downstream training phase to obtain an end-to-end privacy-
preserving solution. Such an extension could also include the integration of FL methods de-
signed for heterogeneous and unbalanced data distributions, such as Orchestra [Lubana et al.,
2022].



70 9.2 Limitations and Future Work



Appendix A

Implementation Notes

The methods are implemented in PyTorch using a modular approach, allowing for easy integra-
tion of different methods and simplifying the configuration of the training parameters. All the
source code is available on GitHub at https://github.com/Alessandro-Gobbetti/MTSSL_

for_Label-Efficient_Learning. The repository also includes the configuration settings and
instructions to replicate our experiments.

In the following, we provide information not included in the main text that helps with
reproducing the results presented in this thesis.

Computational Environment. All experiments are conducted on a NVIDIA GeForce RTX 3080
with 10GB of GPU memory and a NVIDIA RTX A5000 with 24GB of GPU memory, along with
an Intel Core i9-10900K CPU and 128GB of RAM. The implementation is based on PyTorch
2.7.1. To ensure reproducibility, all random seeds are fixed, and the experiments are run with
deterministic algorithms to minimize variability in results.

Training Configuration. The pretraining phase uses the Adam optimizer with a learning
rate of 1× 10−3 and batch size of 64 samples. Unless explicitly discussed, we use the encoder
obtained after 200 epochs of pretraining for all methods. The downstream classifiers are trained
for a maximum of 100 epochs using the Adam optimizer with a learning rate of 1× 10−3. The
batch size for downstream training is set to 32 samples. After training, the best model is selected
based on the validation accuracy and evaluated on the fixed test set.

Multitask Learning Configuration. For multitask SSL approaches, dynamic loss weighting is
employed using the method proposed by Cipolla et al. [2018], where task-specific uncertainty
parameters are learned during training to automatically balance the contribution of different
pretext tasks. The parameters are initialized to 1 and passed to the optimizer to update them
alongside the model parameters.

71

https://github.com/Alessandro-Gobbetti/MTSSL_for_Label-Efficient_Learning
https://github.com/Alessandro-Gobbetti/MTSSL_for_Label-Efficient_Learning


72



Bibliography

Sravanti Addepalli, Kaushal Bhogale, Priyam Dey, and R. Venkatesh Babu. Towards efficient
and effective self-supervised learning of visual representations. In European Conference on
Computer Vision, pages 523–538. Springer, 2022. doi: 10.1007/978-3-031-19821-2_30.

Shams Forruque Ahmed, Md. Sakib Bin Alam, Maruf Hassan, Mahtabin Rodela Rozbu, Taoseef
Ishtiak, Nazifa Rafa, M. Mofijur, A. B. M. Shawkat Ali, and Amir H. Gandomi. Deep learning
modelling techniques: current progress, applications, advantages, and challenges. Artificial
Intelligence Review, 56(11):13521–13617, 2023. doi: 10.1007/s10462-023-10466-8.

Mohammed Aledhari, Rehma Razzak, Reza M. Parizi, and Fahad Saeed. Federated learning: A
survey on enabling technologies, protocols, and applications. IEEE Access, 8:140699–140725,
2020. doi: 10.1109/ACCESS.2020.3013541.

Hamza Amrani, Daniela Micucci, and Paolo Napoletano. Unsupervised deep learning-based
clustering for human activity recognition. In 2022 IEEE 12th International Conference on
Consumer Electronics (ICCE-Berlin), pages 1–6. IEEE, September 2022. doi: 10.1109/icce-
berlin56473.2022.9937141.

D. Anguita, Alessandro Ghio, L. Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. A public do-
main dataset for human activity recognition using smartphones. In The European Symposium
on Artificial Neural Networks, 2013.

Ong Chin Ann and Lau Bee Theng. Human activity recognition: A review. In 2014 IEEE In-
ternational Conference on Control System, Computing and Engineering (ICCSCE 2014), pages
389–393, 2014. doi: 10.1109/ICCSCE.2014.7072750.

Akin Avci, Stephan Bosch, Mihai Marin-Perianu, Raluca Marin-Perianu, and Paul Havinga. Ac-
tivity recognition using inertial sensing for healthcare, wellbeing and sports applications: A
survey. In 23th International conference on architecture of computing systems 2010, pages
1–10. VDE, 2010.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-Invariance-Covariance Regular-
ization for self-supervised learning. ArXiv preprint, 2022. doi: 10.48550/arXiv.2105.04906.

Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan
Gao, Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro Porto Buarque de Gusmão, and
Nicholas D. Lane. Flower: A friendly federated learning research framework. ArXiv preprint,
2022. doi: 10.48550/arXiv.2007.14390.

73

https://doi.org/10.1007/978-3-031-19821-2_30
https://doi.org/10.1007/s10462-023-10466-8
https://doi.org/10.1109/ACCESS.2020.3013541
https://doi.org/10.1109/icce-berlin56473.2022.9937141
https://doi.org/10.1109/icce-berlin56473.2022.9937141
https://doi.org/10.1109/ICCSCE.2014.7072750
https://doi.org/10.48550/arXiv.2105.04906
https://doi.org/10.48550/arXiv.2007.14390


74 Bibliography

Ferhat Bozkurt. A comparative study on classifying human activities using classical machine
and deep learning methods. Arabian Journal for Science and Engineering, 47, 07 2021.
doi: 10.1007/s13369-021-06008-5.

O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. The MIT Press, 1st edition,
2010. ISBN 9780262013848.

Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu. Deep learning
for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM
Comput. Surv., 54(4), May 2021. ISSN 0360-0300. doi: 10.1145/3447744.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 15745–
15753, 2021. doi: 10.1109/CVPR46437.2021.01549.

Yanbei Chen, Massimiliano Mancini, Xiatian Zhu, and Zeynep Akata. Semi-supervised and un-
supervised deep visual learning: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(3):1327–1347, 2024. doi: 10.1109/TPAMI.2022.3201576.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 794–803. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/chen18a.html.

Roberto Cipolla, Yarin Gal, and Alex Kendall. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7482–7491, 2018. doi: 10.1109/CVPR.2018.00781.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsu-
pervised feature learning. In Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pages 215–223. JMLR Workshop and Conference Proceedings,
2011.

Florenc Demrozi, Graziano Pravadelli, Azra Bihorac, and Parisa Rashidi. Human activity recog-
nition using inertial, physiological and environmental sensors: A comprehensive survey. IEEE
Access, 8:210816–210836, 2020. doi: 10.1109/ACCESS.2020.3037715.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective op-
timization. Comptes Rendus Mathematique, 350(5):313–318, 2012. ISSN 1631-073X.
doi: 10.1016/j.crma.2012.03.014.

https://doi.org/10.1007/s13369-021-06008-5
https://doi.org/10.1145/3447744
https://doi.org/10.1109/CVPR46437.2021.01549
https://doi.org/10.1109/TPAMI.2022.3201576
https://proceedings.mlr.press/v80/chen18a.html
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/ACCESS.2020.3037715
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.crma.2012.03.014


75 Bibliography

Sourish Gunesh Dhekane and Thomas Ploetz. Transfer learning in sensor-based human ac-
tivity recognition: A survey. ACM Comput. Surv., 57(8), March 2025. ISSN 0360-0300.
doi: 10.1145/3717608.

Aiden Doherty, Dan Jackson, Nils Hammerla, Thomas Plötz, Patrick Olivier, Malcolm H Granat,
Tom White, Vincent T Van Hees, Michael I Trenell, Christoper G Owen, et al. Large scale
population assessment of physical activity using wrist worn accelerometers: the UK biobank
study. PloS one, 12(2):e0169649, 2017. doi: 10.1371/journal.pone.0169649.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional net-
works. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4829–4837, 2016. doi: 10.1109/CVPR.2016.522.

Sannara Ek, Riccardo Presotto, Gabriele Civitarese, François Portet, Philippe Lalanda, and
Claudio Bettini. Comparing self-supervised learning techniques for wearable human activ-
ity recognition. CCF Transactions on Pervasive Computing and Interaction, 7(1):1–21, March
2025. ISSN 2524-5228. doi: 10.1007/s42486-024-00182-9.

Frank Emmert-Streib. From the digital data revolution toward a digital society: Pervasiveness
of artificial intelligence. Machine Learning and Knowledge Extraction, 3(1):284–298, 2021.
ISSN 2504-4990. doi: 10.3390/make3010014.

Emteq Labs. OCOsense Smart Glasses HAR Dataset, 2022. URL https://www.kaggle.com/

datasets/emteqlabs/emteq-ocosense-smart-glasses-har-data.

Peng Gao, Teli Ma, Hongsheng Li, Ziyi Lin, Jifeng Dai, and Yu Qiao. Mcmae: Masked con-
volution meets masked autoencoders. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 35632–35644. Curran Associates, Inc., 2022.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In International Conference on Learning Representations, 2018.
doi: 10.48550/arXiv.1803.07728.

Alessandro Gobbetti, Martin Gjoreski, Hristijan Gjoreski, Nicholas Lane, and Marc Langhein-
rich. Fedmma-har: Federated learning for human activity recognition with missing modalities
using head-worn wearables. IEEE Pervasive Computing, 23(4):40–49, 2024. doi: 10.1109/M-
PRV.2024.3475473.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In
Proceedings of the 18th International Conference on Neural Information Processing Systems,
NeurIPS ’04, pages 529–536, Cambridge, MA, USA, 2004. MIT Press.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your
own latent a new approach to self-supervised learning. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, NeurIPS ’20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

https://doi.org/10.1145/3717608
https://doi.org/10.1371/journal.pone.0169649
https://doi.org/10.1109/CVPR.2016.522
https://doi.org/10.1007/s42486-024-00182-9
https://doi.org/10.3390/make3010014
https://www.kaggle.com/datasets/emteqlabs/emteq-ocosense-smart-glasses-har-data
https://www.kaggle.com/datasets/emteqlabs/emteq-ocosense-smart-glasses-har-data
https://doi.org/10.48550/arXiv.1803.07728
https://doi.org/10.1109/MPRV.2024.3475473
https://doi.org/10.1109/MPRV.2024.3475473


76 Bibliography

Jie Gui, Tuo Chen, Jing Zhang, Qiong Cao, Zhenan Sun, Hao Luo, and Dacheng Tao. A sur-
vey on self-supervised learning: Algorithms, applications, and future trends. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 46(12):9052–9071, 2024. doi: 10.1109/T-
PAMI.2024.3415112.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task priori-
tization for multitask learning. In Proceedings of the European Conference on Computer Vision
(ECCV), September 2018.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Roge-
rio Feris. Spottune: Transfer learning through adaptive fine-tuning. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4800–4809, 2019.
doi: 10.1109/CVPR.2019.00494.

Nils Y. Hammerla, Shane Halloran, and Thomas Plötz. Deep, convolutional, and recurrent
models for human activity recognition using wearables. In Proceedings of the Twenty-Fifth In-
ternational Joint Conference on Artificial Intelligence, IJCAI’16, pages 1533–1540. AAAI Press,
2016. ISBN 9781577357704.

Harish Haresamudram, Irfan Essa, and Thomas Plötz. Assessing the state of self-supervised
human activity recognition using wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 6(3), September 2022. doi: 10.1145/3550299.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsu-
pervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 9726–9735, 2020. doi: 10.1109/CVPR42600.2020.00975.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Gir-
shick. Masked autoencoders are scalable vision learners. In 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 15979–15988, 2022.
doi: 10.1109/CVPR52688.2022.01553.

Wenke Huang, Mang Ye, Zekun Shi, Guancheng Wan, He Li, Bo Du, and Qiang Yang. Federated
learning for generalization, robustness, fairness: A survey and benchmark. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 46(12):9387–9406, 2024. doi: 10.1109/T-
PAMI.2024.3418862.

Ayokunle Ige and Mohd Halim Mohd Noor. A survey on unsupervised learning for wear-
able sensor-based activity recognition. Applied Soft Computing, 127:109363, 07 2022.
doi: 10.1016/j.asoc.2022.109363.

Wenchao Jiang and Zhaozheng Yin. Human activity recognition using wearable sensors by deep
convolutional neural networks. In Proceedings of the 23rd ACM International Conference on
Multimedia, MM ’15, page 1307–1310, New York, NY, USA, 2015. Association for Computing
Machinery. ISBN 9781450334594. doi: 10.1145/2733373.2806333.

Yilun Jin, Yang Liu, Kai Chen, and Qiang Yang. Federated learning without full labels: A survey.
ArXiv preprint, 2023. doi: 10.48550/arXiv.2303.14453.

https://doi.org/10.1109/TPAMI.2024.3415112
https://doi.org/10.1109/TPAMI.2024.3415112
https://doi.org/10.1109/CVPR.2019.00494
https://doi.org/10.1145/3550299
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR52688.2022.01553
https://doi.org/10.1109/TPAMI.2024.3418862
https://doi.org/10.1109/TPAMI.2024.3418862
https://doi.org/10.1016/j.asoc.2022.109363
https://doi.org/10.1145/2733373.2806333
https://doi.org/10.48550/arXiv.2303.14453


77 Bibliography

Im Y Jung. A review of privacy-preserving human and human activity recognition. International
Journal on Smart Sensing and Intelligent Systems, 13(1):1–13, 2020. doi: 10.21307/ijssis-
2020-008.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary
Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Ja-
vidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar,
Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova,
Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Flo-
rian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Fe-
lix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning.
Foundations and Trends in Machine Learning, 14(1-2):1–210, June 2021. ISSN 1935-8237.
doi: 10.1561/2200000083.

Michail Kaseris, Ioannis Kostavelis, and Sotiris Malassiotis. A comprehensive survey on deep
learning methods in human activity recognition. Machine Learning and Knowledge Extraction,
6(2):842–876, 2024. ISSN 2504-4990. doi: 10.3390/make6020040.

Vitaliy Kinakh, Olga Taran, and Svyatoslav Voloshynovskiy. Scatsimclr: self-supervised con-
trastive learning with pretext task regularization for small-scale datasets. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 1098–1106, 2021.
doi: 10.1109/ICCVW54120.2021.00129.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated op-
timization: Distributed machine learning for on-device intelligence. arXiv preprint, 2016.
doi: 10.48550/arXiv.1610.02527.

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
arXiv preprint, 2017. doi: 10.48550/arXiv.1610.05492.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009.

Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activity recognition using cell
phone accelerometers. SIGKDD Explor. Newsl., 12(2):74–82, March 2011. ISSN 1931-0145.
doi: 10.1145/1964897.1964918.

Matías Laporte, Davide Casnici, Martin Gjoreski, Shkurta Gashi, Silvia Santini, and Marc
Langheinrich. USI-HEAR dataset. Zenodo, March 2024. doi: 10.5281/zenodo.10843791.

Oscar D. Lara and Miguel A. Labrador. A survey on human activity recognition using
wearable sensors. IEEE Communications Surveys & Tutorials, 15(3):1192–1209, 2013.
doi: 10.1109/SURV.2012.110112.00192.

https://doi.org/10.21307/ijssis-2020-008
https://doi.org/10.21307/ijssis-2020-008
https://doi.org/10.1561/2200000083
https://doi.org/10.3390/make6020040
https://doi.org/10.1109/ICCVW54120.2021.00129
https://doi.org/10.48550/arXiv.1610.02527
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.5281/zenodo.10843791
https://doi.org/10.1109/SURV.2012.110112.00192


78 Bibliography

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015. doi: 10.1038/nature14539.

Byeongchan Lee and Sehyun Lee. Implicit contrastive representation learning with guided stop-
gradient. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, NeurIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Dong-Hyun Lee. Pseudo-Label: The simple and efficient semi-supervised learning method for
deep neural networks. ICML 2013 Workshop: Challenges in Representation Learning (WREPL),
07 2013.

Jae-Han Lee, Chul Lee, and Chang-Su Kim. Learning multiple pixelwise tasks based on loss
scale balancing. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages
5087–5096, 2021. doi: 10.1109/ICCV48922.2021.00506.

Clayton Souza Leite, Henry Mauranen, Aziza Zhanabatyrova, and Yu Xiao. Transformer-based
approaches for sensor-based human activity recognition: Opportunities and challenges. arXiv
preprint, 2024. doi: 10.48550/arXiv.2410.13605.

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Oku-
mura. A survey on deep active learning: Recent advances and new frontiers.
IEEE Transactions on Neural Networks and Learning Systems, 36(4):5879–5899, 2025a.
doi: 10.1109/TNNLS.2024.3396463.

Mohan Li, Martin Gjoreski, Pietro Barbiero, Gašper Slapničar, Mitja Luštrek, Nicholas D Lane,
and Marc Langheinrich. A survey on federated learning in human sensing. arXiv preprint,
2025b. doi: 10.48550/arXiv.2501.04000.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data
Engineering, pages 1–1, 2021. ISSN 2326-3865. doi: 10.1109/tkde.2021.3090866.

Christoffer Loeffler, Rasmus Hvingelby, and Jann Goschenhofer. Learning with Limited Labelled
Data, pages 77–94. Springer Nature Switzerland, Cham, 2024. ISBN 978-3-031-64832-8.
doi: 10.1007/978-3-031-64832-8_4.

Aleksej Logacjov. Self-supervised learning for accelerometer-based human activity recognition:
A survey. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 8(4), November 2024.
doi: 10.1145/3699767.

Ekdeep Singh Lubana, Chi Ian Tang, Fahim Kawsar, Robert P. Dick, and Akhil Mathur. Orchestra:
Unsupervised federated learning via globally consistent clustering. In International Conference
on Machine Learning, 2022.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh
and Jerry Zhu, editors, Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pages 1273–1282.
PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/v54/mcmahan17a.html.

https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ICCV48922.2021.00506
https://doi.org/10.48550/arXiv.2410.13605
https://doi.org/10.1109/TNNLS.2024.3396463
https://doi.org/10.48550/arXiv.2501.04000
https://doi.org/10.1109/tkde.2021.3090866
https://doi.org/10.1007/978-3-031-64832-8_4
https://doi.org/10.1145/3699767
https://proceedings.mlr.press/v54/mcmahan17a.html


79 Bibliography

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant repre-
sentations. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6706–6716, 2020. doi: 10.1109/CVPR42600.2020.00674.

Goran Saman Nariman and Hozan Khalid Hamarashid. Communication overhead reduction
in federated learning: a review. International Journal of Data Science and Analytics, 19(2):
185–216, 2025. doi: 10.1007/s41060-024-00691-x.

Charlie Nash, Nate Kushman, and Christopher K.I. Williams. Inverting supervised represen-
tations with autoregressive neural density models. In Kamalika Chaudhuri and Masashi
Sugiyama, editors, Proceedings of the Twenty-Second International Conference on Artificial In-
telligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 1620–
1629. PMLR, 16–18 Apr 2019. URL https://proceedings.mlr.press/v89/nash19a.html.

Jianyuan Ni, Hao Tang, Syed Tousiful Haque, Yan Yan, and Anne H. H. Ngu. A survey
on multimodal wearable sensor-based human action recognition. arXiv preprint, 2024.
doi: 10.48550/arXiv.2404.15349.

Manuel T Nonnenmacher, Lukas Oldenburg, Ingo Steinwart, and David Reeb. Utilizing expert
features for contrastive learning of time-series representations. In Kamalika Chaudhuri, Ste-
fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 16969–16989. PMLR, 17–23 Jul 2022.

Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and lstm recurrent neural
networks for multimodal wearable activity recognition. Sensors, 16(1), 2016. ISSN 1424-
8220. doi: 10.3390/s16010115.

Archit Parnami and Minwoo Lee. Learning from few examples: A summary of approaches to
few-shot learning. arXiv preprint, 2022. doi: 10.48550/arXiv.2203.04291.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
Encoders: Feature Learning by Inpainting . In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2536–2544, Los Alamitos, CA, USA, June 2016. IEEE
Computer Society. doi: 10.1109/CVPR.2016.278.

Vittorio Perera, Tagyoung Chung, Thomas Kollar, and Emma Strubell. Multi-task learning for
parsing the alexa meaning representation language. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.12019.

Ronald Poppe. A survey on vision-based human action recognition. Image and Vision Computing,
28(6):976–990, 2010. ISSN 0262-8856. doi: 10.1016/j.imavis.2009.11.014.

Hangwei Qian, Tian Tian, and Chunyan Miao. What makes good contrastive learning on small-
scale wearable-based tasks? In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’22, pages 3761–3771, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539134.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

https://doi.org/10.1109/CVPR42600.2020.00674
https://doi.org/10.1007/s41060-024-00691-x
https://proceedings.mlr.press/v89/nash19a.html
https://doi.org/10.48550/arXiv.2404.15349
https://doi.org/10.3390/s16010115
https://doi.org/10.48550/arXiv.2203.04291
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1609/aaai.v32i1.12019
https://doi.org/10.1016/j.imavis.2009.11.014
https://doi.org/10.1145/3534678.3539134


80 Bibliography

E. Ramanujam, Thinagaran Perumal, and S. Padmavathi. Human activity recognition with
smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors
Journal, 21(12):13029–13040, 2021. doi: 10.1109/JSEN.2021.3069927.

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitor-
ing. In 2012 16th International Symposium on Wearable Computers, pages 108–109, 2012.
doi: 10.1109/ISWC.2012.13.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang
Chen, and Xin Wang. A survey of deep active learning. ACM Comput. Surv., 54(9), October
2021. ISSN 0360-0300. doi: 10.1145/3472291.

Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. Multi-task self-supervised learning for human
activity detection. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 3(2), June 2019.
doi: 10.1145/3328932.

Lars Schmarje, Monty Santarossa, Simon-Martin Schröder, and Reinhard Koch. A survey on
semi-, self- and unsupervised learning for image classification. IEEE Access, 9:82146–82168,
2021. doi: 10.1109/ACCESS.2021.3084358.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018a.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS
’18, pages 525–536, Red Hook, NY, USA, 2018b. Curran Associates Inc.

Taoran Sheng and Manfred Huber. Reducing label dependency in human activity recognition
with wearables: From supervised learning to novel weakly self-supervised approaches. Sen-
sors, 25(13), 2025. ISSN 1424-8220. doi: 10.3390/s25134032.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,
pages 1310–1321, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450338325. doi: 10.1145/2810103.2813687.

Ravid Shwartz-Ziv, Randall Balestriero, Kenji Kawaguchi, Tim G. J. Rudner, and Yann LeCun. An
information theory perspective on variance-invariance-covariance regularization. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 33965–33998. Curran Associates, Inc.,
2023.

Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul
Downey, Paul Elliott, Jane Green, Martin Landray, et al. UK biobank: an open access resource
for identifying the causes of a wide range of complex diseases of middle and old age. PLoS
medicine, 12(3):e1001779, 2015. doi: 10.1371/journal.pmed.1001779.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint, 2019. doi: 10.48550/arXiv.1807.03748.

https://doi.org/10.1109/JSEN.2021.3069927
https://doi.org/10.1109/ISWC.2012.13
https://doi.org/10.1145/3472291
https://doi.org/10.1145/3328932
https://doi.org/10.1109/ACCESS.2021.3084358
https://doi.org/10.3390/s25134032
https://doi.org/10.1145/2810103.2813687
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.48550/arXiv.1807.03748


81 Bibliography

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extract-
ing and composing robust features with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning, ICML ’08, pages 1096–1103, New
York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582054.
doi: 10.1145/1390156.1390294.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, NeurIPS ’16, pages 3637–3645, Red Hook,
NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep learning for sensor-
based activity recognition: A survey. Pattern Recognition Letters, 119:3–11, 2019. ISSN 0167-
8655. doi: 10.1016/j.patrec.2018.02.010.

Christoph Wieland and Victor Pankratius. Tinygraphhar: Enhancing human activity recognition
with graph neural networks. In 2023 IEEE World AI IoT Congress (AIIoT), pages 0047–0054,
2023. doi: 10.1109/AIIoT58121.2023.10174597.

Sangmin Woo, Sumin Lee, Yeonju Park, Muhammad Adi Nugroho, and Changick Kim. Towards
good practices for missing modality robust action recognition. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 37(3):2776–2784, Jun. 2023. doi: 10.1609/aaai.v37i3.25378.

Yawen Wu, Zhepeng Wang, Dewen Zeng, Meng Li, Yiyu Shi, and Jingtong Hu. Decentral-
ized unsupervised learning of visual representations. In Lud De Raedt, editor, Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pages
2326–2333. International Joint Conferences on Artificial Intelligence Organization, 7 2022.
doi: 10.24963/ijcai.2022/323.

Peiyao Xiao, Chaosheng Dong, Shaofeng Zou, and Kaiyi Ji. Ldc-mtl: Balancing
multi-task learning through scalable loss discrepancy control. ArXiv preprint, 2025.
doi: 10.48550/arXiv.2502.08585.

Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised
learning. IEEE Transactions on Knowledge and Data Engineering, 35(9):8934–8954, 2023.
doi: 10.1109/TKDE.2022.3220219.

Jun Yu, Yutong Dai, Xiaokang Liu, Jin Huang, Yishan Shen, Ke Zhang, Rong Zhou, Eashan
Adhikarla, Wenxuan Ye, Yixin Liu, Zhaoming Kong, Kai Zhang, Yilong Yin, Vinod Namboodiri,
Brian D. Davison, Jason H. Moore, and Yong Chen. Unleashing the power of multi-task
learning: A comprehensive survey spanning traditional, deep, and pretrained foundation
model eras. arXiv preprint, 2024. doi: 10.48550/arXiv.2404.18961.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NeurIPS ’20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

Hang Yuan, Shing Chan, Andrew P. Creagh, Catherine Tong, Aidan Acquah, David A. Clifton,
and Aiden Doherty. Self-supervised learning for human activity recognition using 700,000
person-days of wearable data. npj Digital Medicine, 7(1):91, 2024. doi: 10.1038/s41746-
024-01062-3.

https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1016/j.patrec.2018.02.010
https://doi.org/10.1109/AIIoT58121.2023.10174597
https://doi.org/10.1609/aaai.v37i3.25378
https://doi.org/10.24963/ijcai.2022/323
https://doi.org/10.48550/arXiv.2502.08585
https://doi.org/10.1109/TKDE.2022.3220219
https://doi.org/10.48550/arXiv.2404.18961
https://doi.org/10.1038/s41746-024-01062-3
https://doi.org/10.1038/s41746-024-01062-3


82 Bibliography

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 12310–12320. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/zbontar21a.html.

Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised semi-
supervised learning. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 1476–1485, 2019. doi: 10.1109/ICCV.2019.00156.

Chaoning Zhang, Chenshuang Zhang, Junha Song, John Seon Keun Yi, and In So Kweon. A
survey on masked autoencoder for visual self-supervised learning. In Edith Elkind, editor,
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-
23, pages 6805–6813. International Joint Conferences on Artificial Intelligence Organization,
8 2023a. doi: 10.24963/ijcai.2023/762.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on
federated learning. Knowledge-Based Systems, 216:106775, 2021. ISSN 0950-7051.
doi: 10.1016/j.knosys.2021.106775.

Fengda Zhang, Kun Kuang, Long Chen, Zhaoyang You, Tao Shen, Jun Xiao, Yin Zhang, Chao
Wu, Fei Wu, Yueting Zhuang, and Xiaolin Li. Federated unsupervised representation learn-
ing. Frontiers of Information Technology & Electronic Engineering, 24(8):1181–1193, 2023b.
doi: 10.1631/FITEE.2200268.

Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Y. Zhang,
Yuxuan Liang, Guansong Pang, Dongjin Song, and Shirui Pan. Self-Supervised Learning
for Time Series Analysis: Taxonomy, Progress, and Prospects. IEEE Transactions on Pat-
tern Analysis & Machine Intelligence, 46(10):6775–6794, October 2024. ISSN 1939-3539.
doi: 10.1109/TPAMI.2024.3387317.

Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science Review, 5(1):
30–43, 09 2017. ISSN 2095-5138. doi: 10.1093/nsr/nwx105.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, 34(12):5586–5609, 2022. doi: 10.1109/TKDE.2021.3070203.

https://proceedings.mlr.press/v139/zbontar21a.html
https://doi.org/10.1109/ICCV.2019.00156
https://doi.org/10.24963/ijcai.2023/762
https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1631/FITEE.2200268
https://doi.org/10.1109/TPAMI.2024.3387317
https://doi.org/10.1093/nsr/nwx105
https://doi.org/10.1109/TKDE.2021.3070203

	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Objectives and Contributions
	Structure of the Thesis

	Background and Related Work
	Introduction
	Human Activity Recognition
	Learning with Limited Labeled Data
	Self-Supervised Learning
	Semi-Supervised Learning
	Complementary Paradigms for Data-Efficient Learning
	Multitask Learning for better embeddings

	Federated Learning
	Standard Federated Learning
	Federated Learning with Limited Supervision

	Closing Remarks

	Data and Experimental Set-up
	Introduction
	UCI HAR Dataset
	Experimental Setup
	Creating a Limited Labeled Data Scenario
	Cross-Validation Strategy
	Training Configuration
	Evaluation Metrics
	Hyperparameter Selection

	Closing Remarks

	Self-Supervised Learning
	Introduction
	Architecture
	Encoder
	Downstream Classifier
	Supervised Baseline
	Self-Supervised Variations

	Pretrain Tasks
	Pretext Tasks
	Contrastive Learning

	Results
	Closing Remarks

	Multitask Self-Supervised Learning
	Introduction
	Architecture
	Results
	Comparing with Single-Task SSL
	Visualizing the Data Representations
	Different Pretraining Tasks Combinations
	Consequences of Overfitting during Pretraining
	Ablation: Different Encoders
	Ablation: Testing the Embedding Size

	Closing Remarks

	Improving Accuracy
	Introduction
	Pseudo-Labeling
	Results
	Closing Remarks

	Multitask Pretraining in a Federated Learning Setting
	Introduction
	Federated Learning Setting
	Results
	Closing Remarks

	Generalization to Other Domains
	Introduction
	Data
	Architecture
	Encoder
	Downstream Classifier

	Selected Pretrain Tasks
	Contrastive Learning
	Pretext Tasks
	Multitask SSL Model

	Results
	Closing Remarks

	Conclusions
	Summary of Findings and Contributions
	Limitations and Future Work

	Implementation Notes
	Bibliography

